
Chapter 5: Moving Together 
Some of the most mesmerizing examples of collective behaviour are seen 
overhead every day. V-shaped formations of migrating geese, starlings dancing 
in the evening sky and hungry seagulls swarming over a fish market, are just some 
of the wide variety of shapes formed by bird flocks. Fish schools also come in 
many different shapes and sizes: stationary swarms; predator avoiding vacuoles 
and flash expansions; hourglasses and vortices; highly aligned cruising parabolas, 
herds and balls. These dynamic spatial patterns often provide the examples that 
first come into our heads when we think of animal groups.  

While the preceding three chapters described the dynamics of animal groups, 
they did not explicitly describe the spatial patterns generated by these groups. 
For example, the decision-making of insects and fish was studied in situations 
where individuals have only two or a small number of alternative sites to choose 
between. In models of these phenomena, space is represented as the number 
of individuals who have taken each of these alternatives. This approach often 
simplifies our understanding of the underlying dynamics of these groups, but in 
doing so it can fail to capture the spatial structure that characterizes them. As a 
simple consequence of the fact these groups move, we need to give careful 
consideration to how they change position in space as well as time. 

The main tool I will use in describing the dynamics of flocking are self-propelled 
particle (SPP) models (Czirok & Vicsek 2000; Okubo 1986; Vicsek et al. 1995). In 
SPP models ‘particles’ move in a one, two or three dimensional space.  Each 
particle has a local interaction zone within which they respond to other particles. 
The exact form of this interaction varies between models but typically, individuals 
are repulsed by, attracted to, and/or aligned with other individuals within one or 
more different zones. These models allow us to investigate the conditions under 
which collective patterns are produced by spatially local interactions.  

5.1 Attraction 
Before animals can create spatial patterns they must first come together. In 
chapter 2, I discussed how and why animal groups form without specific 
reference to spatial structure. A good starting point for explicitly representing 
space comes from Niwa (2004). His model, which is an extension of a non-spatial 
model described in chapter 2, describes groups of individuals that are 
constrained to move on a lattice (see Box 5.A). Each group performs a random 
walk and when groups meet they merge. Groups split with a fixed probability per 
time step. Figure 5.1a shows an example of how composition of these groups 
changes through time and space. Over time groups ‘clump’ together. Sites 
containing large groups are usually located near to other sites containing large 



groups, while sites with few individuals are surrounded by other sites with few 
individuals. The position of these clumps changes through time as the groups 
move according to a random walk. 
 

Box 5.A Niwa’s spatial merge and split model 
The basic assumptions of this model are the same as in box 2.B. A total of m individuals are 
initially randomly distributed across s sites and ni represents the number of individuals on site i. 
The key difference in the spatial model is how the groups move. Here we assume that groups 
move on a d dimensional lattice of discrete sites, such that each site has 2d neighbouring sites, 
e.g. in one dimension each site has neighbours to the left and right and in two dimensions each 
site has neighbours to the north, east, south and west. The lattice is structured so that individuals 
moving off, for example, the north edge of the lattice reappear at the south. Thus the lattice is a 
circle in one dimension and a torus in two dimensions. On each time step, each group either 
moves to one of neighboring sites, each chosen with equal probability l/2d, or with probability p 
the group splits in to two groups, one which stays on the same site and the other which moves to 
a randomly chosen neighbouring site. When a group splits the size of the two components is 
chosen uniformly at random, so that all group sizes are equally likely. If two groups of size ni and 
nj meet at site k then they form a new group nk = ni + nj, thus groups always merge when they 
meet. The same rule applies if three or more groups meet.  

 

Figure 5.1a shows a simulation of the above model in one dimension (d=1). From an initial 
distribution where each individual occupies one site, larger groups quickly form. These groups 
perform a random walk and increase in size as they meet other groups. After 1000 time steps 
there are around five or six large groups and a number of smaller groups.  Figure 1b shows the 
distribution of group sizes at a randomly chosen site over 100,000 time steps of the simulation. 
Niwa (2004) went on to show that the distribution of group sizes in these simulations is 
characterized by exactly the same curve as in his earlier non-spatial model (Box 2.B). By finding 
the mean group size experienced by an individual it is possible to give an expression for the 
entire distribution of group sizes. 
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Figure 5.1: Simulation of Niwa’s spatial merge and split model. Simulation of model 
described in box 5.A with s=m=200 sites/individuals and split probability p=0.05. Initially 
each site contains a single individual, i.e. a group of size 1. (a) The  time evolution of the 
number of individuals across the sites. Darker shading indicates larger groups at a 
particular site, white indicates sites containing no individuals.  (b) Shows the distribution of 
the number of individuals in a randomly chosen site over 100,000 simulation time steps. 

The solid line is equation 2.1 with P
N  estimated directly from the simulation. 

 



The unit of description in Niwa’s model is the group. The model defines rules for 
how groups merge and split. The strength of this approach is that it reproduces 
the empirical distribution of fish school sizes (compare figure 5.1b and figure 2.6). 
The main limitation of this model is that it does not describe how between-
individual interactions produce group dynamics. Establishing such a connection 
is often the central question in the study of flocking. It is here that self-propelled 
particle models play an important role. 

 

In the simplest SPP model the only interaction between individual ‘particles’ is 
attraction (Box 5.B). Figure 5.2a shows the outcome of a one dimensional SPP 
model in which individuals are attracted to other individuals within a fixed 
distance. As in Niwa’s model, relatively stable clusters of individuals quickly form. 
Unlike Niwa’s model, larger clusters move slower than solitary individuals. This is 
because individuals on the edge of the cluster are attracted inwards, resulting in 
a constant pull towards the centre of the cluster’s mass. As clusters increase in 
size they move less and less, while solitary individuals and smaller groups move 
and eventually join the clusters (Okubo 1986). After some time a small number of 
large stationary clusters form.  



Box 5.B Self-propelled particle models 

The term self-propelled particle (SPP) was introduced by Vicsek et al. (1995), but the idea of 
building models where individuals interact through zones of repulsion, attraction and alignment 
had been proposed independently by a number of authors (Aoki 1982; Gueron et al. 1996; 
Helbing & Molnar 1995; Okubo 1986; Reynolds 1987). This box presents some of the simplest of 
these models, including a model of aggregation and Vicsek and co-workers original SPP model of 
alignment, as well as a more detailed   model by Couzin et al. (2002) including repulsion, 
attraction and alignment.  

 

The general SPP model involves a group of N particles in a d dimensional space. Let the vectors 
xi and ui represent the position and velocity individual i. Let r represent the interaction radius of 
the individuals. On each time step t, all individuals update their position and velocity as follows 
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where vo is a constant determining a baseline distance which individuals move per time step and 
α is the inertia of an individual (i.e. its tendency to keep the same direction as on the previous 
time step). The vectors s and e are determined on each time step for each individual. s is a vector 
(usually a unit vector) with a direction that depends on the position and velocity of the set of 
particles, Ri, which are within distance r of individual, excluding itself. e is a random vector 
incorporating noise in to the movement of the individual and may also be a function of the position 
and velocity of i’s neighbours. 

 

Attraction: To model individuals which are attracted to one another the vector s should point 
towards the average position of an individual’s neighours. In one dimension we can set  
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The function sign{a} returns 1 if a>1, -1 if a<1, and 0 if a=0. We set e to be a random number 
selected uniformly at random from a range [ ]2/,2/ ηη− , where η is a constant. 

Figure 5.2a shows a simulation of this model on a one dimensional ring. In this model 
aggregations form and these move more slowly as their size increases. 

 

Alignment: Individuals align by adopting the same direction as their neighbours. In one 
dimension, Czirok et al. (1999) use 
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and e  as in the attraction model above. The function G ensures that velocities of individuals 
equilibrate around either -1 or 1.  Figure 5.4 gives examples of simulations of this model for 
different numbers of individuals. As density increases collective motion emerges in the form of a 
single large group of individuals all going in the same direction.  

 

In two dimensions, Vicsek et al. (1995) s+e to be a unit vector with direction given by the average 
angle of the vectors plus some random term. Specifically,  
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where the θj  are the directions of i’s  neighbours and ε is chosen uniformly at random from a 
range [ ]2/,2/ ηη− . Unlike the two models above, in Vicsek’s model α=0, but the individual i is 
always included in the in the set Ri of neighbours. Thus each individual includes itself as a 
neighbour when averaging velocities. Figure 5.7 gives snapshots of simulations of this model for 
different magnitudes of noise. Noise plays the opposite role of density: for higher noise motion is 
less ordered.  

 

Repulsion, attraction, alignment and blind angles: Couzin et al. (2002) model involves three 
zones of interaction: an inner zone of repulsion, an intermediate zone of orientation and an outer 
zone of attraction (Figure 5.8a). The individuals have a blind angle behind them within which they 
do not respond to individuals which would otherwise be in their orientation or attraction zone. The 
rule for repulsion is simply that individuals move directly away from nearby individuals. The rules 
for attraction and alignment are similar to those described for the two simple models. Figure 5.8 
investigates a three dimensional version of this model for different sizes of orientation zones. 
Provided there is a sufficiently large blind angle, the group goes through a transition from swarm 
to milling torus to a highly aligned group.  
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Figure 5.2: Outcome of (a) simple attraction model in Box 5.B compared to (b) 
experiments on cockroach aggregation and (c) Jeansson et al. (2005) detailed 
individual-based model. 

 

Such aggregation dynamics are seen in cockroach groups (Jeanson et al. 2005).  
Cockroaches interact via antennal contact and are attracted to other 
cockroaches through physical contact. Thus, relative to the size of their 
environment, their zone of attraction is small. Jeanson et al. (2005) placed small 



groups of cockroaches in a circular arena and watched their aggregation 
behaviour. Since cockroaches are strongly attracted to walls, most of their 
movement is constrained to the edge of this arena. In effect, the attraction to 
the arena edge means that movements of the cockroaches take place in one 
dimension and the aggregation process can be visualised by plotting the 
angular position of the cockroaches through time (figure 5.2b). In experiments 
where cockroaches were initially placed at random within the arena, a cluster 
quickly formed containing nearly all of the cockroaches. As in the SPP model, 
cockroaches within the cluster move much less than those outside of it.   

 

Jeanson et al. (2005) developed a parameterised model based on experiments 
on groups of two to four cockroaches. The principle underlying this model was 
similar to the simple aggregation SPP model, but it included more detail of 
walking trajectories in different parts of the two-dimensional arena, probabilities 
of individuals starting and stopping walking, and the effect of collisions from 
different directions such as front and behind. The model showed that local 
contacts alone were sufficient for the rapid aggregation observed in 
experiments (figure 5.2c).  

 

Whether animals aggregate depends on their environmental context (Krause 
1994; Krause & Ruxton 2002). Larger groups provide dilution from predator attack 
and individuals in smaller groups get a larger share of food discoveries (chapter 
2). Hoare et al. (2004) found killifish group sizes were significantly smaller in the 
presence of food odour and larger in the presence of an alarm odour. To explain 
the behavioural mechanisms that produced these observations they used an 
SPP model of fish interactions, with terms for repulsion, attraction and alignment.  
They showed that the observed change in group size distribution could be 
explained solely by a change in the size of the interaction zone. The distance at 
which a fish is attracted to another fish decreases in the presence of food and 
increases in the presence of a predator. This study provides a nice link between 
mechanism and function: the regulation of group sizes to perceived risk results 
directly from a change in interaction radius. 

 

The mechanisms underlying spatial aggregation have been studied for a range 
of species:  from midges (Okubo & Chiang 1974) and bark beetles (Deneubourg 
et al. 1990b) to primates (Hemelrijk 2000). More than twenty years since its 
publication, the review by Okubo (1986) still provides the best synthesis of 
mathematical and empirical aspects of aggregation.  



5.2 Alignment 
Attraction alone cannot explain the dynamics of most animal flocks. In 
particular, the aggregative clusters formed by between-individual attraction 
move slower as cluster size increases (figures 5.1a and 5.2a,c). These observations 
are in direct contrast to those of fish schools, locust swarms and migratory birds 
that, while remaining a cohesive group, move rapidly in the same direction. 
Indeed, it is the rapid propagation of directional information that characterises 
these groups, and 

 

Figure 5.3: Example of Radakov's experiment where fish schools are presented with a 
fright stimulus. The position of fish was filmed and projected on a wall so that a picture 
could be made of the position and orientation of the fish. Reproduced from Radakov 
1973. 

 

poses the greatest challenge to our understanding of them (Couzin & Krause 
2003). How is it that a bird flock or a fish school can apparently turn in unison 
such that all members almost simultaneously change direction? 

 



It was the pioneering experimental work by Radakov (1973) that first showed how 
changes in direction can be rapidly propagated by local interactions alone. He 
used an artificial stimulus to frighten only a small part of a school of silverside fish. 
The fish nearest to the stimulus changed direction to face directly away from it. 
As these fish changed direction they stimulated others nearby, but further away 
from the artificial stimulus, to also change direction. A “wave of agitation” 
spread away from the artificial stimulus (figure 5.3). This propagation of 
directional information was much more rapid than the displacement of the fish. 
The fish nearest to the stimulus moved less than 5cm in the same time it took 
every fish within 150cm of the stimulus to change direction to face away from 
the stimulus. Changes in direction (a)     (b)   
 (c) 
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Figure 5.4: Example simulations from one dimensional SPP models. Simulation of the SPP 
model of alignment in one dimension. The change in particle density through time for  (a) 
N=10 (b) N=50 and (c) N=100 particles. The alignment at time t is defined as  
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The average direction.  The alignment is given for (d) N=10 (e) N=50 and (f) N=100 
particles. Other parameters are L=150, r=1, v=1, α=0.66 and η=0.8.  

 

propagated at speeds of up to 11.8 – 15.1 metres per second over distances of 
between 30 and 300cm.     

 

While not directly inspired by Radakov’s work, the transfer of directional 
information was the key ingredient in the self-propelled particle models of Vicsek 
et al. (1995). In fact, Vicsek’s model has only two ingredients determining the 
direction particles move in: alignment to nearby particles and noise (Box 5.B). 
Figure 5.4a-c shows examples of these simulations in one dimension for different 
particle densities. A central prediction of Vicsek’s model is that as the density of 
particles increases, a transition occurs from disordered movement to highly 
aligned collective motion (Czirok et al. 1999; Czirok et al. 1997; Vicsek et al. 1995). 
Figure 5.4d-f show how the mean direction, or the degree of alignment, of 
particles changes through time in a one dimensional version of the model from 
Box 5.B for three different particle densities. At low densities, the alignment 
remains close to zero (figure 5.4a,d). At intermediate densities, all particles adopt 
a common direction for a period of time but this direction switches at random 
intervals (figure 5.4b,e). At high densities, particles adopt a common direction 
which persists for a long period of time (figure 5.4c,f). The transition from disorder 
(random motion) to order (aligned motion) occurs at a critical density, below 
which alignment is zero and above which absolute alignment increases with 
group size (Czirok et al. 1999).  

 

Such a transition from disordered to ordered motion is seen in the collective 
motion of locusts. Buhl et al. (2006) looked at the alignment of various densities of 
locusts in an experimental ring-shaped arena. This setup effectively confined the 
locusts to one dimension and the degree of alignment could be measured as 
the average direction of movement relative to the centre of the arena. For small 
populations of locusts in the arena there was a low incidence of alignment 
among individuals. Where alignment did occur, it did so only after long initial 
periods of disordered motion (figure 5.5a). Intermediate-sized populations were 
characterized by long periods of collective rotational motion with rapid 
spontaneous changes in direction (figure 5.5b). At large arena populations, 
spontaneous changes in direction did not occur within the time scale of the 
observations, and the locusts quickly adopted a common and persistent 
direction (figure 5.5). As predicted by Vicsek’s model, alignment of locusts 



becomes non-zero above a critical density (figure 5.6). The simplicity of Vicsek’s 
SPP model suggests that phase transitions should be a universal feature of 
moving groups  (Buhl et al. 2006). Similar transitions are observed in fish (Becco et 
al. 2006) and in tissue cells (Szabo et al. 2006).  



 

Figure 5.5: Experiments on locusts in a ring. The alignment over the experiment of (a) 7 
locusts, (b) 20 locusts and (c) 60 locusts. (d to f) Corresponding samples of time-space 
plots (3 min), where the x axis represents the individuals’ angular coordinates relative to 
the center of the arena, and the y axis represents time. Reproduced from Buhl et al 
(2006). 

 

When extended to two or three dimensions, Vicsek’s model generates 
spectacular dynamical patterns that are highly reminiscent of the movement of 
flocks (figure 5.7). Again the two dimensional model undergoes a phase 
transition where alignment becomes non zero above a critical particle density or 
below a critical nose level (Vicsek et al. 1995).  

 

While reproducing many of the characteristics of animal flocks, Vicsek’s model is 
by no means sufficient to explain all aspects of flocking. To start with, it does not 
contain an attraction term of the type discussed in the previous section. In fish, 
attraction between individuals has long been viewed as having equal 
importance to alignment in determining group dynamics (Partridge 1982). The 
omission of attraction from Vicsek’s model means that a bounded group cannot 
form. In an SPP model without an attraction term, a large group of particles 
moving in the same direction spreads out and particles will ‘escape’ from the 
back of the group (Gregoire et al. 2003). When confined to a small space this 



diffusion will not lead to a significant breakup of the group because stragglers 
are picked up when they meet the large group again, but in an infinite (or large) 
space the group will eventually break apart.  
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Figure 5.6: Comparison of the mean alignment in the (a) SPP model and (b) the locust 
data as a function of the  number of particles (or locusts). Reproduced from Buhl et al 
(2006). 

 

A cohesive moving group can form if both attraction and alignment terms are 
included in an SPP model. Gregoire et al. (2003) drew a phase diagram for a 
two-dimensional SPP model which included terms for attraction, alignment and 
noise. They found that when attraction was weak relative to alignment, particles 
behaved as either a disordered or moving ‘gas’, similar to those seen in the two-
dimensional Viscek model (figure 5.7). This gas was characterised by the 
proportion of particles that were members of the largest group being less than 
one. When attraction was increased the proportion of particles within the largest 
group tended to one, and Gregoire et al. classified this state as a liquid ‘droplet’. 
Within this droplet two close together particles diffused away from each other 
through time while remaining within this large group. Compared to the gas in 
figure 5.7, in which groups split apart and reform, individuals moved around 
within the single droplet but did not leave it. As the attraction term was further 
increased, the liquid turned into a solid ‘crystal’ and the particles remain at a 
fixed position within the crystal through time. Provided alignment was sufficiently 
large relative to noise, both liquids and solid exhibited cohesive collective motion 
where all particles moved as a group in the same direction.  

 



A number of aspects of Gregoire et al.’s model resemble the motion of animal 
flocks. Moving crystals and droplets both exhibit periods of ballistic flight, where 
the mean square displacement of the group was proportional to (time)2, i.e. 
groups fly in a straight line. Furthermore, the lengths of these ballistic flights 
increased with the size of the group. This is in contrast to the non-moving phases 
where attraction is dominant, e.g. as in figure 5.2a. In this case, the mean square 
displacement of the group was proportional to time and the lengths of ballistic 
flights decreased inversely (a)       (b) 
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Figure 5.7: Example of patterns from two dimensional SPP model with alignment. Model is 
as described in box 5.B. Parameters are n=200, v0=0.5, L=25, and r=1. The noise is varied 
between simulations (a) η=3, (b) η=1.5 and (c) η=0.5. 

 



proportionally to group size.  Crystals and droplets both resemble various forms of 
moving animal groups: crystals look roughly like highly parallel groups of fish or 
birds, while the droplets possibly resemble flying locust swarms. Particularly 
interesting is the existence of mesoscopic “hydrodynamical” structures, such as 
jets, vortices, etc., within droplets (Gregoire et al. 2003). It is this dynamical 
patterning on a meso-scale within a generally coherent motion on the scale of 
the entire group that might be said to best characterise the collective motion of 
many flocking animals. However,  

the ‘zoology’ of these meso-scale shapes has not been fully investigated and 
compared to empirical observations. 

5.3 Rules of motion 
The attraction and alignment models discussed in the previous sections have not 
been calibrated against real data of how fish, birds or locusts interact with one 
another. Instead, the philosophy of these models is to provide as simple as 
possible model for the interaction of animals that reproduces the key features of 
flocks. This philosophy is aimed at ensuring that model outcomes are not 
dependent on some particular biological feature, but reveal universal properties 
of all flocks. The approach is also to some degree unavoidable. Empirical 
determination of the detailed interactions of fish or birds is technically difficult. 
These groups move in two or three dimensions and often come in close contact 
with each other, making automated or even manual tracking difficult (Hale 
2008). 

 

There are, however, a number of high quality studies of fish interactions, most 
notable those of Partridge in the early 1980s. Studies of the structure of schools of 
saithe, cod and herring show that fish maintain a minimum distance between 
each other, supporting evidence for local repulsion (Partridge et al. 1980). By 
tracking individual fish, Partridge (1981) established that saithe match their 
swimming direction and speed to their two nearest neighbours, but probably not 
to more distant neighbours. Partridge & Pitcher  (1980) found that ‘blindfolded’ 
saithe continued to match short term changes in velocity of their neighbours 
using their lateral line (the motion detecting sense organ which runs down fish 
bodies). Vision was however important in maintaining between neighbour 
distance, with blind fish having increased nearest neighbour distances. Fish 
which had their lateral line disabled compensated by changing postion so they 
could see direction changes by neighbours. In general, the lateral line appears 
to determine alignment, while vision determines attraction and repulsion. 

 



An impressive step forward in the understanding of both the global structure of 
groups moving in three dimensions and the behaviour of individuals within these 
groups is the Starflag project (Ballerini et al. 2008a; Cavagna et al. 2008a; 
Cavagna et al. 2008b). Using multiple cameras these researchers were able to 
determine the position of most of the starlings in flocks consisting of thousands of 
birds. Like fish, the starlings maintain a minimum distance from each other, i.e. 
have a zone of repulsion (Ballerini et al. 2008a). Starlings are also less likely to 
have neighbours behind or in front of them than to have neighbours on either 
side. As distance from a focal bird increases this spatial organisation disappears, 
so that birds further away from a focal bird are equally likely to be at any angle.  

 

 

Figure 5.8: Transition from swarm to torus to alignment. (a) Illustration of the rules 
governing an individual in the fish model. The individual is centred at the origin: zor, zone 
of repulsion; zoo, zone of orientation; zoa, zone of attraction. The possible ‘blind volume’ 
behind an individual is also shown, α, field of perception.  Collective behaviours 
exhibited by the model: (b) swarm, (c) torus and (d ) dynamic parallel group. 



 

Local spatial structure is not simply a function of distance but rather a function of 
neighbour number. The nearest neighbour is much more likely to be to the side of 
than directly in front of or behind a focal bird. This tendency then decreases for 
the second neighbour then the third neighbour and so on. After the sixth or 
seventh neighbour the spatial structure vanishes and these neighbours are 
equally likely to be at any angle relative to the focal bird (Ballerini et al. 2008b). 
This relationship is less robust when considering only the distance between 
neighbours. Even when the flock is more tightly packed spatial correlations are 
seen only between a fixed number of neighbours. The relationship would suggest 
that instead of interacting with all or some birds within a certain fixed radius, as is 
assumed in most models, starlings interact with their 6 or 7 nearest neighbours.  

 

5.4 Complex moving patterns 
The shapes of bird flocks, fish schools and locust swarms are not limited to groups 
of aggregated or aligned individuals. Some of these shapes can emerge from 
simple interactions of repulsion, attraction and alignment alone. For example, 
Couzin et al.  (2002) proposed a model in which individual animals have three 
zones—repulsion, alignment and attraction—of increasing size, so that individuals 
are attracted to neighbours over a larger range than they align, but decrease in 
priority, so that an individual always moves away from neighbours in the repulsion 
zone (figure 5.8a). These individuals also have a rear blind zone within which they 
cannot sense others. 

 

Keeping the repulsion and attraction radii constant, Couzin found that as the 
alignment radius increased, individuals would go from a loosely packed 
stationary swarm (figure 5.8b), to a torus where individuals circle round their 
centre of mass (figure 5.8c) and, finally, to a parallel group moving in a common 
direction (figure 5.8d). This transition from milling to torus to departure is typical of 
the motion of real fish schools. The model shows that these three very different 
collective patterns self-organise in response to small adjustments to one factor: 
the radius over which individuals align with each other. 

 

Other patterns seen in animal flocks may be more difficult to produce from 
models of identical ‘memoryless’ self-propelled particles interacting in a 
homogeneous environment. For example, Radakov (1973) reports “feeler” 
structures in silverside fish during their evening migration away from the shore. A 



few fish swim away from the group forming a ribbon-like structure as others 
follow. The leading group then reduces speed and starts feeding, at which point 
a “neck” builds up as more and more fish are drawn from the main group. In 
some cases this neck leads the whole group to the new feeding ground, while in 
others the neck breaks off and a sub -group separates from the main group. 
Overall, the process gives the impression of the school making a tentative 
investigation of whether it is worth moving feeding grounds. 

 

Another common pattern in fish schools is the fountain response to the approach 
of a predator towards a group of prey (Pitcher, 1985). In this response the fish fan 
out in front of a predator and circle round behind it. Self-propelled particle 
models can reproduce this type of group response to predators (Iawad, 2001 
and see section 5.6). However, Hall et al. (1986) argue that a fountain response 
can occur simply by each individual prey moving away from the predator while 
keeping it at the edge of its field of view. Fish have a blind angle of roughly 60°, 
so by keeping the predator behind them at an angle of 150° the fish are moving 
away from the predator as rapidly as possible without losing sight of it. This 
argument appears consistent with experimental data on the response of shoals 
of juvenile whiting (Hall et al. 1986), but it is not entirely clear whether social 
interactions may also play a role in creating the fountain effect. 

 

Determining the degree to which simple rules for attraction and alignment 
capture the shapes produced by real animal groups remains a key problem 
(Parrish et al. 2002). 

No detailed statistical comparison has been made between the motion of and 
within real flocks and those predicted by SPP models. For example, Uvarov 
(1977),  describes the marching bands of locusts as having a dense front and 
columns that go through an otherwise diffuse cloud of individuals. These 
observations have little in common with the shapes arising from, for example, 
Gregoire et al.’s (2003) model. Similarly, Ballerini et al.’s (2008) observation that 
starling flocks have a dense boundary and a sparser interior directly contradicts 
most SPP models, which predict either homogeneous density within a group or a 
density which decreases with distance from the group’s centre. Explaining the 
emergence of complex moving structures will require greater consideration of 
the rules adopted by individuals, of how individuals interact with the environment 
and of between-individual differences.  



5.5 Decisions on the move 
When navigating, animals in moving groups usually have access to two types of 
information, their own experience or internal compass information and the 
direction taken by other group members. A central problem faced by animals 
travelling in these groups is how to integrate this information, especially when 
members cannot assess which individuals are best informed. In the context of 
avian navigation, two alternative schemes have been proposed (Wallraff 1978). 
The “many wrongs” hypothesis, which is described in more detail in section 4.3, is 
that individuals average their preferred direction, leading to a compromise in 
route choice. The average of these many wrongs should lead to an 
improvement in navigational performance. Wallraff’s alternative to the many 
wrongs hypothesis is the ‘leadership’ hypothesis. Under this hypothesis, one or a 
small number of the animals takes a leading role and the others follow. 

 

Neither the many wrongs nor the leadership hypothesis accounts for how 
information is transferred between group members through local interactions. 
Indeed, the many wrongs hypothesis leads to the paradox, discussed in section 
4.4, that for information to be transferred some individuals must follow others but 
at the same time too much following will reduce the success of the averaging. 
To bypass this limitation, Biro et al. (2006) developed a mechanistic model of 
navigational conflict between pairs of individuals. In the model (described in Box 



5.C), individuals 
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Figure 5.9: Outcome of decision-making in pairs. (a) Predictions model in box 5C. 
Equilibrium solutions of equations 5.C.3 and 5.C.4 as a function of the distance between 
the individuals' targets, d. The arrows show how different initial positions of bird X lead to 
different equilibria. The initial position of bird Y is always  d/2. The parameter values are ra 
= 400, rb = 80 were chosen to reflect the perception ranges of real pigeons. The other 
parameters  α=1 and β=1 assume no intrinsic difference between the birds (b) Outcome 
of pigeon experiments. Point by point distances between each birds established route 
and its route taken when in a pair are made in to a histogram and then the largest and 
the second largest modes of the data are plotted.  

 

interact according to two hypothesized forces: attraction to its own target 
position (own information) and attraction to the partner’s current position (social 
information).  

 

Figure 5.9a shows, for the model in Box 5.C, the effect of varying the distance 
between the individuals' targets, d, on the final decision reached. The model 
predicts that at small distances between established routes, individuals average, 



with their position equilibrating at d/2. At a critical between-route distance, of 
approximately twice the range at which individuals are maximally attracted to 
their  



Box 5.C Model of paired navigational decision-making  

We consider a dynamic model for decision-making, where two individuals, X and Y each decide 
on a real-valued ‘position’, starting from initial positions x(0) and y(0). These individuals come to a 
final position as a result of a combination of two forces: predisposition to move toward a target 
position and local attraction towards the other individual’s current position.  

Predisposition to target: X, respectively Y, are attracted to a target position with value 0, 
respectively d. The rate at which an individual moves toward its predisposed choice initially 
increases with distance from the target, but above a point of maximum attraction the rate 
decreases. For individual X, we model this rate with the function 

)/exp( arxx −−    (equation 5.C.1) 

where x is the current position and  is the point at which the attractive force towards the target 

reaches a maximum. Individuals further from the target than  have a weaker attraction towards 

it due to difficulties in perceiving the target, while individuals nearer than  have a decreasing 

but positive attractive force, modelling an increasing degree of ‘comfort’ with decreasing distance 
to the target. 

ar

ar

ar

Between-individual attraction: We model this with the function  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−

2

2
)(exp)(

br
yxyx    (equation 5.C.2) 

where x and y are the current positions of the two individuals and  is the point of maximum 

attraction to other individuals. Attraction only occurs locally, so that once individuals move out of 
the range of perception, the rate of attraction quickly decreases. 
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We combine the two forces acting on the individuals to give a differential equation model of how 
the individuals change position: 
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(equations 5.C.3 and 5.C.4) 

 



The parameter α determines the ratio of the maximum between-individual attraction over the 
maximum attraction to the target. β determines the ratio (Y:X) of the strength of the individuals’ 
attraction to their targets. Figure 5.9a shows the equilibrium solutions to the model equations as a 
function of the distance d between the individuals’ targets.  
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Figure 5.9: Outcome of decision-making in pairs. (a) Predictions model in box 5C. 
Equilibrium solutions of equations 5.C.3 and 5.C.4 as a function of the distance between 
the individuals' targets, d. The arrows show how different initial positions of bird X lead to 
different equilibria. The initial position of bird Y is always  d/2. The parameter values are ra 
= 400, rb = 80 were chosen to reflect the perception ranges of real pigeons. The other 
parameters  α=1 and β=1 assume no intrinsic difference between the birds (b) Outcome 
of pigeon experiments. Point by point distances between each birds established route 
and its route taken when in a pair are made in to a histogram and then the largest and 
the second largest modes of the data are plotted.  

 

established routes, a bifurcation occurs. For d larger than this critical value, both 
individuals move closer to that of one of the individuals. A third possible outcome 
is splitting, where each individual moves exclusively towards its own target. Such 
outcomes occur over a wide range of d but always result from initial differences 
in the individuals' positions. 

 

While the model in Box 5.C provides an abstract representation of navigational 
decision-making, it was designed specifically with the behaviour of homing 
pigeons in mind. Predisposition to a target models the phenomenon of route 



recapitulation and route loyalty by homing pigeons and between-individual 
attraction models social cohesion between birds. We tested the model's 
predictions against data we collected on homing pigeons (Biro et al. 2006). We 
first allowed homing pigeons to each establish their own route home from a 
release site. Once individuals had learnt their own routes they were released in 
pairs. In these paired releases instances of many wrongs compromise and of 
leadership were observed, even within a single journey of a single pair of birds. 

 

In order to test how the distance between the birds’ ‘target’ routes affected the 
outcome of their paired flight, we looked point-by-point through the whole flight 
at how the distance between the birds’ independent flights affected the 
distance between their routes. Figure 5.9b shows the largest and second largest 
modes of distances between routes taken by individuals during their paired flight 
and the immediately preceding single (established) route as a function of 
distance between the birds' established routes at the corresponding point of the 
journey. We see a similar bifurcation in this data as we see in the model 
prediction (figure 5.9a). As the distance between the birds’ targets increases a 
bifurcation occurs from compromise to leadership. 

 

Our model is limited because it deals with only two individuals and abstracts 
away possibly important aspects of spatial interactions. Couzin et al. (2005) 
proposed an SPP model where individual particles move in a two dimensional 
space according to rules of attraction, alignment and repulsion. In this model a 
large group of 'uninformed' individuals interacts with two small groups of 
informed individuals which each move toward different targets. As the angle 
between the targets increases there is a bifurcation where the group goes from 
taking a direction intermediate to the two small leading groups to taking the 
direction preferred by one of the two groups.  

 

5.6 Leading the swarm 
An interesting prediction of the Couzin et al. (2005) model is that a small number 
of informed individuals can lead a large group. In these simulations groups of 200 
uninformed individuals were almost always successfully led to a target by groups 
of less than 10 leaders. Thus observations of large numbers of birds, fish or insects 
moving in the same direction do not imply that even a majority of individuals 
know where they are going or even know which individuals know where they are 
going. The Couzin et al. (2005) model thus suggests a ‘subtle guide’ mechanism: 



a largely uninformed group can be led by a small group of informed ‘leaders’ 
even when the identity of the leaders is unknown. 

 

One of the most impressive examples of a large group of uninformed individuals 
being led by a small group is the flight of honey bee swarms from their temporary 
bivouac on a tree branch to a new nest site (see section 9.3). Up to around 
10,000 bees of which only 2 or 3% are informed of the location of the nest site fly 
as a single swarm to the site. How does such a small group lead such a large 
group to a small nest site? Lindauer (1955) hypothesised that the informed 
individuals repeatedly ‘streak’ through the swarm in order to inform the other 
bees of the direction of the nest. Janson et al. (2005) formalised this hypothesis in 
an SPP model and showed that 150 ‘streaker bees’ could lead a swarm of 3,000 
uninformed bees, and these swarms could avoid obstacles in their path without 
splitting. While streaking might help guide a swarm, the ‘subtle guide’ hypothesis 
presented above suggests that streaking is not a requirement for a small number 
of individuals to lead a large swarm. A further alternative to the ‘subtle guide’ or 
‘streaker bee’ hypotheses is a ‘vapour trail’, where the informed bees move to 
the front of the swarm and release a chemical pheromone creating a gradient 
which the other bees follow (Avitabile et al. 1975).  

 

Beekman et al. (2006) tested the ‘vapour trail’ hypothesis by sealing, in the bees, 
the glands which release pheromone and comparing the flight of sealed gland 
colonies with control colonies.  Gland sealing had no significant effect on the 
flight speed of the swarm nor on the time it took the swarm to reach a nest box, 
contradicting hypotheses based on pheromones. Beekman et al. (2006) noted 
that some bees in the swarm were moving at maximum speed  (9-10m/s) while 
the swarm as a whole moved at only 2-3 m/s, providing evidence for the 
‘streaker bee’ hypothesis. Schultz  et al. (2008) provided stronger evidence of 
streaking by filming a swarm from below. They found that bees in a top portion of 
the swarm flew quickly in the direction of the nest site and these fast moving 
bees were observed at the front, middle and back of the swarm. However, while 
it appears clear that some bees streak along the top of the swarm and then 
return through it at slower speeds, there is still no direct link between these fast 
flying bees and the scouts.  

 



5.7 Evolution of flocking 
Hamilton (1971) and Vine (1971) were the first researchers to look at how the 
geometry of an animal group might be shaped by natural selection. They both 
proposed ‘selfish herd’ models in which individuals in the group are motivated to 
move into the centre of the group by the risk of predation. In Hamilton’s model, 
individuals live on a one-dimensional lattice and follow the rule: if the site an 
individual occupies has a larger population than those to the left and right then 
it stays there, otherwise it moves to the neighbouring site that is occupied by the 
largest number of other individuals. In contrast to the mechanistic model of 
aggregation described in Box 5.A, Hamilton’s model is motivated by functional 
considerations. However, the outcome of both models is similar: tightly packed 
clumps of individuals emerge (as they do in figure 5.2a). Vine and Hamilton both 
expand on this initial model and find similar results: tight aggregations are a 
consequence of selfish individuals’ attempt to use other individuals as cover.  

 

The geometrical predictions of selfish herd models hold for a wide range of 
species that form stationary groups (Krause 1994; Krause & Ruxton 2002; Quinn & 
Cresswell 2006; Rayor & Uetz 1990). Individuals near the centre of these groups 
are less likely to be attacked than those on the edge. Several studies have 
revealed that when there is a predation risk, fish move closer together (Krause 
1993; Tien et al. 2004). On the other hand, Focardi & Pecchioli (2005) found that 
the foraging success of deer increased with distance from the centre of the 
group. There is thus a trade-off between increased food intake on the outside of 
the group and increased safety in the centre. We might then expect position in a 
group to be determined by nutritional state, with well fed individuals near the 
centre and hungry individuals on the outside.  

 

In moving groups it is less clear how the position in a group relates to safety from 
predation. Parrish (1989) showed in laboratory experiments that while grouping 
silverside fish are attacked less often by sea bass than stragglers which have 
recently departed from the group, if the group is attacked it is the fish in the 
centre that are the subject of these attacks.  Parrish suggested that this is 
because the predators attack the centre of the group, which then splits in two 
leaving central individuals exposed. This interpretation is supported by simulations 
of SPP models (Inada & Kawachi 2002).  Parrish’s study is limited however by the 
fact that very few attacks by the predators were successful: only five group 
members were killed throughout all experiments, three of which were in the 
centre and two on the periphery. 



 

The complex dynamic patterns generated by flocking animals should convince 
us that a selfish desire to be shielded by others is not the only evolutionary force 
that has shaped them. Group membership may also allow individuals to gain 
information about the location of food (Pitcher et al. 1982) and of predators 
(Treherne & Foster 1981), to benefit in terms of energetic efficiency (Weimerskirch 
et al. 2001) and even to hunt co-operatively (Partridge et al. 1983). A problem 
however is disentangling functional and mechanistic explanations for dynamic 
patterns. Many patterns may be a consequence of the interactions between 
individuals and have little or no adaptive significance (Parrish et al. 2002). For 
example, the transition from disorder to order in locust marching appears to be a 
fundamental property of SPP models, suggesting that rather than resulting from 
the fine tuning of natural selection it is simply a necessary aspect of all grouping 
animals (Grunbaum, 2006). Similarly, it would be wrong to conclude that a 
moving fish torus has evolved to signal between group members that departure 
is imminent, but rather it could be an unavoidable consequence of all members 
increasing their tendency to align with each other (Couzin & Krause 2003). 

 

Behaviours which produce flocking patterns are in some cases themselves 
subject to natural selection. For example, one intrinsic property of SPP models is 
dynamic instability. Such instability was seen at intermediate densities in 
experiments on locusts, with changes in direction rapidly spreading through the 
entire group (figure 5.5e). If a small number of locusts spontaneously change 
direction, the others rapidly change their direction in response. This spread of 
directional information is reminiscent of Radakov’s (1973) experiments on fish. 
Information about the presence of a stimulus is rapidly transmitted through the 
entire group.  

 

Several modelling studies have investigated how the rules governing the 
alignment, repulsion and attraction of self-propelled particles might be optimised 
so as to allow the particles to avoid predation (Inada & Kawachi 2002; Lee 2006; 
Lee et al. 2006; Zheng et al. 2005). In these studies a predator particle that is 
introduced into the simulation attempts to attack the group of prey particles. 
Inada & Kawachi  (2002) varied the maximum number of neighbouring 
individuals with which each prey aligned. They showed that if prey aligned with 
only one nearest neighbour then group movements were uncoordinated in 
response to a predator, but if they interacted with two or three the group was 
able to effectively align away from the predator. However, if prey individuals 



align with larger numbers of neighbours then the group would change direction 
slowly in response to a predator, because the minority of individuals that had 
sensed the predator and begun to move away from it would be ´outvoted´ by 
the uninformed majority that continue in their previous direction. Zheng et al. 
(2005) obtained similar results to Iwada by changing a different model 
parameter. They showed that there is an optimal weighting that individuals 
should put on aligning with other prey relative to orienting away from the 
predator. By aligning with each other rather than purely away from a predator, 
the prey avoid costly collisions. The collective outcome is a confusion effect, 
where the predator repeatedly changes target.  

 

Most modelling studies of predator avoidance have looked at group success, 
measured in terms of number of group members captured by a predator, as a 
function of model parameters. From a functional viewpoint, however, the 
question is how individuals regulate their propensity to align, or their interaction 
range, or other aspects of their behaviour so as to minimise their own probability 
of being caught by the predator. While aligning with others may increase the 
confusion effect for the predator, the best strategy for a focal individual may be 
to move directly away from the predator. As a result a social parasitism dilemma 
arises: while co-operating individuals can generate a pattern which optimises 
group success, a defecting individual surrounded by co-operators can benefit to 
the greatest degree by not participating in the pattern. The pattern is then not 
evolutionarily stable (see chapter 10). 

 

Wood et al. (2007) investigated the evolutionary stability of self-propelled 
particles to predation. They used the same model for particle movements as 
Couzin et al. (2002) but allowed the particles to evolve their interaction zones in 
response to predation. The main parameters governing the interaction zones are 
the relative size of the attraction, Ra and orientation zones, Ro, as well as the 
angle θ over which the particles can ‘see’ their neighbours. The total area over 
which a particle could monitor its neighbours, i.e. θπRa2 was fixed to a constant 
for all particles. This constraint means that their viewing area is restricted to a 
local neighbourhood of constant area. On the first generation a population of 80 
individuals each with its own values of Ra, Ro, and θ was simulated for a sufficient 
number of time steps so as to allow a dynamic pattern to form. A predator, 
which attempted to capture the prey individuals, was then introduced into the 
simulation. After a fixed number of time steps those surviving individuals, i.e. those 
which had not been caught by the predator, went on to the next generation 
and those individuals that were caught were replaced by ‘offspring’ of the 



surviving individuals. These offspring were subject to small mutations in the 
parameter values so that individuals with new values for Ra, Ro, and θ entered 
into the population.  

 

There was a clear pattern in the evolution of the parameters. Firstly, the angle 
over which the particles could see evolved to be large, θ≈280º leaving a blind 
angle of 80º. This is reasonably close to the blind angle of  60 º of many species of 
fish (Hall et al. 1986).  The evolution of the small blind angle constrained the 
attraction radius Ra within which the orientation radius Ro was then free to 
evolve. Two evolutionary outcomes were possible for Ro, evolving either to be 
close to, but slightly larger than, 0 or to be close to, but slightly smaller than, Ra. In 
the first case the particles formed a slow moving milling group (figure 5.10a) while 
in the second they formed a fast moving dynamic group (figure 5.10b). Which of 
these outcomes evolves depends on the initial values of Ro within the population 
and the rate of mutation during selection. If Ro was initially large a dynamic 
group would evolve and if it was initially small a slow moving mill would evolve. 

 

 

Figure 5.10: Typical example of the two types of evolutionarily stable flock types in the 
Wood et al. model. Each flock is shown before and during the attack of a predator.  (a) 
is a compact milling torus that responds relatively slowly to the predator while (b) is a 
dynamic parallel group with a high degree of alignment but only loose between 
individual attraction. When a predator attacks the group fans out to avoid it. Prey heads 
are marked with a circle and the line indicates their current velocity. Predators are larger 
and marked with an arrow. 



 

While both evolving through ‘natural selection’, the dynamic group was more 
efficient than the slow moving mill at avoiding predation. The dynamic group 
had similar responses to predators as the optimised groups of Inada & Kawachi  
(2002) and of Zheng et al. (2005). It produced a confusion effect and split to 
avoid predation in 60-70% of cases. On the other hand, the predator was almost 
always successful in catching prey when faced with a slow moving mill. Wood et 
al.’s (2007) study is important because it provides evidence that complex 
collective level phenomena can evolve between ‘selfish’ individuals without the 
need to invoke arguments based on kin selection or repeated interactions 
between individuals. 
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