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5ynchronization occurs when large numbers of individuals co- ordinate 
to act in unison. In this wide definition of the word, many different types 
of collective behavior are examples of synchronization. A highly aligned 
group of birds, fish, or particles can be said to have synchronized their di-
rection of movement. More commonly, however, when we use the word 
synchronization we are thinking about time. Bank robbers synchronize 
their watches before a robbery, the instruments of the orchestra are syn-
chronized by the conductor and the sound is synchronized to the pictures 
in a film. It is this narrower sense of the word synchronization I use in 
this chapter. How and why do behaviors become synchronized in time?

Given that synchronization is a specific type of collective behavior 
it should come as no surprise that it shares many properties with sys-
tems looked at in earlier chapters of this book. In particular, and unlike 
with the bank robbers or the orchestra, synchronization can be achieved 
without a leader or centralized control. As with other types of collec-
tive behavior, we can also build mathematical models that describe how 
synchronization emerges from individual interactions. Indeed, some of 
the models of synchronization are among the most elegant models of col-
lective behavior and have been employed successfully in understanding a 
wide variety of biological and social systems.

Rhythmic Synchronization

While the instruments of a concert orchestra are, at least in part, synchro-
nized by signals from the conductor, the applause of the audience after 
the performance is not usually centrally controlled. Despite the lack of 
a central controller, in Eastern Europe and Scandinavia this applause is 
often rhythmical, with the entire audience clapping simultaneously and 
periodically. Neda et al. (2000a, 2000b) recorded and analyzed the clap-
ping of theater and opera audiences in Romania and Hungary and found 
a common pattern: first an initial phase of incoherent but loud clapping, 
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followed by a relatively sudden jump into synchronized clapping that, 
after about half a minute, was again rapidly replaced by unsynchronized 
applause (figure 6.1a). A surprising observation was that the average vol-
ume of the synchronized clapping is lower than that of unsynchronized 
applause, both before and after the synchronized bouts. While an audi-
ence presumably wants to maximize their volume and thus their appre-
ciation of the performance, they are unable to combine louder volumes 
with synchronized clapping.

Neda and co- workers went on to record small local groups in the au-
dience and asked individuals, isolated in a room, to clap as if (I) “at the 
end of a good performance” or (II) “during rhythmic applause.” Both 
modes of clapping were rhythmical at the individual level, with individu-
als clapping in mode I twice as fast as those clapping in mode II (figure 
6.1b). The important difference was in the between- individual variation 
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Figure 6.1. The emergence of synchronized clapping (reproduced from Neda et al. 2000a). 
(a) The average noise intensity of a crowd through time. The first 10 seconds show unsyn-
chronized fast clapping, followed by a change to regular slower clapping, until around 27 
seconds, followed by unsynchronized clapping again. (b) A normalized histogram of clap-
ping frequencies for 73 high school students (isolated from each other) for Mode I (solid 
lines) and Mode II (zig- zag lines) clapping.
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for the two modes. When asked to clap rhythmically, isolated individuals 
chose similar, though not precisely identical, clapping frequencies, while 
when given the freedom to applaud spontaneously the chosen frequencies 
spread over a much wider range.

To interpret this observation, Neda et al. (2000b) used a classical 
mathematical result about coupled oscillators. Kuramoto (1975) studied 
a model of a large number of oscillators, each with its own frequency 
but coupled together so that they continually adjust their frequency to be 
nearer that of the average frequency. Kuramoto showed that provided the 
oscillators’ initial frequencies are not too different, they will eventually 
adopt the same frequency and oscillate synchronously (Kuramoto 1984). 
This is what happens to audiences clapping according to mode II. Their 
initial independent clapping frequencies are close together, and by listen-
ing to the clapping of others, they synchronize their clapping. Audiences 
clapping in mode I have initial frequencies that are less similar to each 
other. Thus even if they try to adjust their clapping in reaction to the 
sound around them, the Kuramoto model predicts that they will never 
arrive at a state of synchronized clapping. This is exactly what happened 
in the recorded audiences: faster clapping, with greater inter- individual 
variation never synchronized. Concert audiences are thus forced to choose 
between two different manners of showing their appreciation: loud, fre-
quent, unsynchronized or quieter, less frequent, synchronized clapping.

The importance of Kuramoto’s model, which is presented in detail in 
box 6.A, is that it shows that individuals with slightly different frequen-
cies can synchronize, each by moving their frequency slightly towards 
the average. It further predicts that above some critical level of between- 
individual variation synchronization does not occur at all (figure 6.2). In 
their empirical study, Neda et al. proposed that the opera crowds with 
unsynchronized clapping have a level of intrinsic variation above this 
critical level, and those with synchronized clapping have an intrinsic 
variation below the critical level. The switch in clapping mode from I to 
II reduces the between- individual variation and synchronization ensues.

Synchronized rhythmic activity is seen in many different animal groups 
and across much of biology (Strogatz 2003). As discussed in chapter 1, 
the oestrus cycles of female lions are usually synchronized within a pride 
(Bertram 1975) and the phase of these oscillations can be reset by the 
takeover of the pride by a new male (Packer & Pusey 1983). Likewise, 
human females’ menstrual cycles become synchronized when the females 
are living or working closely together (Stern & McClintock 1998). 

For many systems there is a good understanding of the physiological 
mechanisms involved in coupling individuals. Probably the best under-
stood mechanism within animal behavior is the simultaneous flashing of 
some species of fireflies (Buck 1988; Buck & Buck 1976). Isolated fireflies 
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flash approximately once every second, but if they are subjected to an 
artificial flash at some point between flashes then their next flash is sup-
pressed until approximately 1 second after the artificial flash (Buck et al. 
1981). Mirollo & Strogatz (1990) developed a model to show that such 
phase resetting oscillators will synchronize, although they deal only with 
the case where all oscillators have the same intrinsic frequency. A number 
of good reviews have been written both of firefly flashing (Buck & Buck 

Figure 6.2. How coherence changes in the Kuramoto model with (a) coupling strength 
and (b) oscillator variation. The solid lines are the average coherence after 2000 time steps 
over 1000 runs of N� �800 oscillators. The dotted line in (a) is the approximation r |

r K K KC C≈ −( )π , where KC = 23 πσ . In this simulation V� �1. (b) The dotted line is the ap-
proximation r C≈ −( )π σ σ σ , where σ πC K= 23 . In this simulation K� �2.
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Box 6.A The Kuramoto Model

Kuramoto (1975; 1984) proposed a simple model for the synchro-
nization of coupled oscillators. Kuramoto assumed that the fre-
quency, i.e., the rate of change of the phase Tk , of each oscillator k, 
was determined by

 
d
dt

K
N

k
k j k

j

Nθ
ω θ θ= + −

=

∑sin( )
1

, (6.A.1)

where N is the number of oscillators and K is the strength of cou-
pling between the oscillators. Zk is the natural frequency of the 
oscillator, the frequency it will adopt if it is not coupled to other 
oscillators (i.e., when K� �0). Under this model, each oscillator ad-
justs its frequency in response to the phases of the other oscillators. 
If oscillator k has a smaller phase than the average phase of all other 
oscillators, then it will increase its frequency and thus become more 
in phase with the other oscillators. Likewise, if oscillator k has a 
larger phase than average, then it will decrease its frequency.

Intuitively, we would expect such a regulation to result in the 
phases of the oscillators becoming more similar. What is less clear 
is how we expect the degree of synchronization to change as a 
function of the coupling strength, or of the initial frequency dif-
ferences between the oscillators. Kuramoto defined the coherence, 
i.e., the degree of phase synchronization, between the oscillators to 
be the complex number
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where i= −1. By recalling the definition of a complex number, 
re r iiψ ψ ψ= +(cos( ) sin( )), and doing some algebraic manipulation 
we see that
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Thus \ gives the average phase and r is a measure of the variation 
between the phases of the oscillators. When all the oscillators have 
the same phase, Tj� �\, then
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r
N

N N= + =
1

12 2 2 2cos sinψ ψ .

If all oscillators have a random phase, independent of that of the 
other oscillators, then as N r ', r r 0. Thus larger values of r in-
dicate a more coherent population of oscillators.

Figure 6.2b shows how coherence changes with the variation of 
the initial frequency, i.e., the standard deviation of the distribution 
of the Zk. When the standard deviation is small r is large. As the 
standard deviation increases r decreases. There is a critical level 
of between- oscillator variation, above which there is no coherence 
and below which coherence begins to emerge.

The definitions of r and \ not only provide a convenient way of 
measuring coherence, but also allow an elegant mathematical anal-
ysis of Kuramoto’s original model. A more detailed mathematical 
discussion of Kuramoto’s model is provided in Strogatz (2000) . 
Here I summarize some of the main results presented by Strogatz. 
If we multiply both sides of equation 6.A.2 by e i k− θ and then equate 
the complex parts we get

r
Nk j k

j

N

sin( ) sin( )ψ θ θ θ− = −
=

∑1

1

.

Substituting this into equation 6.A.1 we see that

 
d
dt

rKk
k k

θ
ω ψ θ= + −sin( ). (6.A.3)

When the coherence r is small or the coupling K is weak then the 
pull away from the natural frequency is small. Conversely, strongly 
coupled oscillators with high coherence have a strong pull away 
from the natural frequency.

Kuramoto assumed an infinite number of oscillators with initial 
frequencies Zk taken from a distribution with a symmetrical prob-
ability density function with mean \� �0, e.g., the normal distribu-
tion. From equation 6.A.3 we see that at equilibrium

ω θk krK= sin( ).

(Box 6.A continued on next page)
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1976; Camazine et al. 2001) and rhythmic synchronization in general 
(Strogatz 2003; Strogatz & Stewart 1993).

Stochastic Synchronization

Anyone who has seen a flock of sheep or a group of hens pecking in 
a farmyard knows that domestically farmed animals commonly syn-
chronize their behavior. Hens (Hughes 1971), pigs (Nielsen et al. 1996), 
and sheep (Rook & Penning 1991) are just some examples of animals 
that feed simultaneously. While simultaneous feeding may in part be ac-
counted for by synchronized circadian rhythms and environmental cues, 
it can also be due to increased feeding in response to the feeding of others. 
For example, Barber (2001) found that laying hens were more motivated 
to feed in the presence of feeding companions.

Collins & Sumpter (2007) looked at how the number of feeding chick-
ens at a particular point in a commercial chicken house influenced the 
rate at which other chickens began feeding nearby. Chicken houses are 
large homogeneous environments where a supply of food is provided 
along a feeding trough. The food constantly moves along this trough, 
ensuring that the supply is equal at all points of the feeder and that, in the 
absence of other birds, no part of the environment is consistently more 
attractive to the birds than any other. Figure 3.7 shows how the rate at 
which chickens join and leave a point at a feeding trough changed as a 
function of the number of birds already at that point. As the number of 

Those oscillators with ωk rK<  approach this equilibrium, while 
those with ωk rK>  “drift” without arriving at the equilibrium. 
Kuramoto went on to derive a number of useful results. For ex-
ample, if the Zk are initially normally distributed with mean 0 
and variance V�2 then synchronization occurs, i.e., r�!�0, whenever 
K> 23 πσ . Below the critical value KC = 23 πσ the oscillators 
all act independently of each other. For values of K slightly above 
this critical value the proportion of the synchronized oscillators is

r
K K

K
C

C

≈
−







π .

Figure 6.2a compares this approximation with an average outcome 
of 1000 simulations of 800 oscillators.
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chickens feeding at a point increases, the rate of arrival increases and the 
rate of leaving decreases.

Based on these observations, we developed a model to predict the long 
term dynamics of chickens arriving and leaving the feeder. The model 
predicted the dynamics of real chickens feeding (figure 6.3a) and the dis-
tribution of the number of chickens feeding at points along the feeder 
(figure 6.3b). Rather than being Poisson, as it would be if the chick-
ens did not respond to the feeding of others, the distribution is skewed 
toward observations of either none or lots of chickens at the feeder. A 
qualitatively similar distribution was seen in further observations of the 
number of chickens at the feeder through space and time (figure 6.3c, d). 

Figure 6.3. Comparison of simulation model and observations of real chickens. (a) Ex-
ample of simulated number of birds feeding at different sections along the feeder through 
200 simulated minutes. Darkness of shading indicates number of birds at that point along 
the feeder. (b) The distribution of number of chickens feeding per three adjacent feeding 
sections over 10,000 simulated minutes. (c) Example of activity at different sections along a 
real chicken feeder through 10 minutes. (d) Distribution of number of chickens feeding per 
three adjacent feeding sections over these 10 minutes. Fitted lines in (b) and (d) show distri-
bution of the number of chickens assuming a Poisson distribution. See Collins & Sumpter 
(2007) for parameter values and details of the model and experimental setup.
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Box 6.B Stochastic Synchronization of Feeding

Box 3.C in chapter 3 describes a model of birds that choose to feed 
at a particular food patch as an increasing function of the number 
of birds already at that patch. Here, we consider a simulation of this 
model with access to only one food patch, f� �1. Birds can  either 
forage at the food patch or rest away from the food patch. The 
probability of joining a food patch per bird not at the food patch is

 s m s
C t

k C t
+ −

+









( )

( , )
( , )

1
1

α

α α , (6.B.1)

and the probability per bird of leaving the food patch is a constant 
l (see box 3.C for an explanation of the parameters).

Figure 6.4b shows a time series of how many birds are visiting 
the feeder for a simulation of a group of n� �7 birds. Figure 6.4a 
shows the distribution through time of individuals at the food 
patch. There are bouts during which there are no birds at the food 
patch and bouts during which nearly all the birds are at the food. 
These resting and feeding bouts are relatively stable with most of 
the birds synchronizing their feeding.

To help understand how this synchronization arises, figure 6.4c 
shows the average number of birds joining the food patch per time 
step, i.e.,

 n C t s m s
C t

k C t
−( ) + −

+


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
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1
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as a function of the number of birds on the patch. The probability 
of one bird going to the feeder when none are there is relatively 
small, but once one bird is there, the probability is greater that 
another bird arrives than that the bird leaves. Furthermore, once 
two birds are there the probability of arriving becomes greater still 
until the number of birds climbs up to between 3 or 4. The average 
number of birds leaving the food patch per time step is lC(1, t) as 
shown in figure 6.4c.

The points at which the average joining and leaving rates are 
equal correspond to feeding equilibriums. There are three such 
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The sharp quorum response and positive feedback mean that, despite no 
environmental differences along different sections of the feeder, at any 
one time certain parts of the feeder will be preferred over others.

Box 6.B presents a simplified version of the chicken feeding model for 
a group of seven chickens visiting only a single feeder. Figure 6.4 illus-
trates how synchronized feeding occurs in this model. The birds alternate 
between most of them feeding and nearly all resting, but are not periodic 
in their feeding bouts. During resting periods there are small fluctuations 
with some individuals engaging in feeding. At some point these fluctua-
tions take the number of individuals to a level at which the average rate 
of joining the feeder exceeds the average rate of leaving. The population 
quickly climbs to a point where the majority of birds are feeding. The 
number feeding fluctuates around this equilibrium, and at some point 
a large fluctuation leads to the number of foragers falling close to zero 
again. This pattern continues, but with no clearly defined frequency.

Gautrais et al. (2007) found that small groups of sheep synchronize 
their bouts of activity, and these bouts are not necessarily periodic. They 
fitted a Markov chain model to the data, where the state of the model 
was the number of active individuals. The measured transition probabili-
ties of the Markov chain were such that the rate at which inactive indi-
viduals became active increased with the number of active sheep in the 
group and decreased with the number of inactive sheep. The opposite 
effect was seen on inactive sheep. These relationships produced rapid 
switching between the all- active and all- inactive states, without any obvi-
ous periodicity in the activity patterns.

From Randomness to Rhythm

The model in box 6.B is an example of synchronization without period-
icity: there is no well- defined frequency in the activity patterns either of 

equilibriums, the smallest of which corresponds to a stable rest-
ing equilibrium and the largest to a stable feeding equilibrium. The 
middle equilibrium is unstable, such that if by chance the number of 
feeding birds drops below this unstable equilibrium then the birds 
quickly equilibrate at mostly resting. Alternatively, if the number 
of feeding birds goes above the unstable equilibrium, the number 
of feeding birds quickly equilibrates with 3 or 4 feeding. Thus the 
number of birds at the food patch jumps between the two stable 
equilibriums of none and, alternatively, 3 to 4 birds at the patch.
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individuals or of groups. Conversely, the Kuramoto model describes a 
situation where both individuals and groups have an inherent periodic-
ity. Ants provide an interesting example of activity cycles that is not suc-
cessfully modeled by either of these approaches. Figure 6.5 shows time 
series and frequency power spectra of both isolated individuals and whole 
colonies of the species Temnothorax allardycei. Single ants have no well- 
defined period between their bouts of activity, while whole colonies of 
these ants have synchronized, periodic activity bouts (Cole 1991a, 1991b).

A model based on box 6.B could be adopted to explain ant activity 
cycles. Under such a model ants would be assumed to have two states, 
active and inactive. We would further assume that encounters with active 
ants increase the probability of other active ants remaining active and/or 
the probability of inactive ants becoming active. Such a model certainly 
creates synchronization, but it is less clear how it generates periodicity.

How then can periodicity arise at the group level when absent in iso-
lated individuals? An initial suggestion by Goss and Deneubourg (1988) 
was that after a bout of activity, inactive ants have an “unwakeable” 
period where interactions with others do not result in them becoming 
active. Under this model, isolated individuals’ inactive bouts have a de-
terministic minimum time plus an exponentially distributed period until 
the start of the next active bout. In groups, this latter part of the inactiv-
ity bout can be interrupted by disturbance from other ants, whereby all 
ants are woken by the first ant coming out of its bout of inactivity. As 
a result, the inactive bouts become equal to the length of the “unwake-
able” periods and the “unwakeable” periods become synchronized. An 
alternative assumption is that active ants are “unsleepable” with some 
minimum length of activity bouts (Cole & Cheshire 1996; Sole & Mira-
montes 1995; Sole et al. 1993). The effect of this assumption is similar 
to in the “unwakeable” model: although there was a minimum time be-
tween the start of activity bouts in isolated ants, the time between bouts 
has no well- defined period. When in groups, however, the ants became 
synchronized with the gaps between the starts of bouts determined by 
the “unsleepable” periods. These observations are largely consistent with 
observations of real ants (figure 6.5).

Activity bouts within ant colonies are not always periodic. Franks et 
al. (1990) found that colonies of Leptothorax acervorum have synchro-
nized, but not always periodic bouts of activity. Boi et al. (1999) found 
that periodicity was strongest amongst workers further from the entrance 
to the nest and was disturbed by the return of workers to the colony. 
They also found that activity originated in the center of the nest, where 
the brood is kept, and spread outwards. In experiments where forager 
returns were prevented activity started first and lasted longer in the center 
of the nest than at the nest entrance.



142

5000

0
650 750 950 1050850 1150

Ac
tiv

ity 10000

0
0 100 300 400200 500

Time

5000

10000

0
0 100 300 400200 500

0
0 100 300 400200 500

A
ct

iv
ity

0
0 100 300 400200 500

Time

1000

2000

1000

2000

1000

2000

0
0 100 300 400200 500

Figure 6.5. Activity records (taken from B. J. Cole, “Short- Term Activity Cycles in Ants: 
Generation of Periodicity by Worker Interaction,” February 1991, The American Natural-
ist 137:2, 244–259, figs. 2 & 6, © The University of Chicago Press) for (a) three colonies of 
Leptothorax acervorum and (b) three isolated individual ants. One time unit is one minute.

(a)

(b)



S Y N C H R O N I Z A T I O N

143

Why Synchronize?

Synchronized activities are beneficial to individuals in a range of situa-
tions. For example, sheep (Ruckstuhl 1999), deer (Conradt 1998), and 
other ungulates have synchronized bouts of feeding and digestion. By 
choosing to forage for food together, individuals reduce their probability 
of being attacked by a predator and increase their opportunity for infor-
mation transfer (see chapters 2 and 3). Synchronized activity could be a 
requirement for the social cohesion that allows animals to benefit from 
being in a group (Conradt & Roper 2000).

Box 6.C describes a simple functional model of a pair of animals, each 
of which chooses between either resting or foraging for food. The model 
assumes that the benefit of foraging decreases with the nutritional state of 
an individual. There is a cost associated with foraging, which is smaller 
if both individuals forage simultaneously. Two key points arise from the 
analysis of this model. The first point is that the evolutionarily stable 
strategy is for the individuals to synchronize their actions, i.e., forage 
at the same time and rest at the same time, even when their nutritional 
states are different (figure 6.7). The second point is that synchronization 
of actions does not imply synchronization of nutritional state. Instead, 
the individual with the lower nutritional state initiates foraging and the 
individual with higher nutritional state follows, because of the benefit 
it gains from foraging with a partner. Once the individual with higher 
nutritional state reaches a level of nutrition such that it no longer pays 
to forage, even with a partner, it will stop foraging. At this point the less 
well- nourished individual will also stop, because it does not pay to for-
age alone. The less well- nourished individual thus never “catches up” 
with the better nourished individual (figure 6.6b) and the two nutritional 
states remain at different levels.

The model has implications for how we think about leadership of 
groups. The less well- nourished individual in the pair takes the lead in 
initiating foraging, while the better- nourished takes leads in stopping for-
aging (Rands et al. 2003). These results are robust to the addition of 
noise. If the increase q and decrease r in nutritional state are random 
rather than constant on each time step then, on average, one of the indi-
viduals remains better nourished than the other (figure 6.6c). However, 
contrary to a suggestion by Rands et al. (2003), differences in nutritional 
states are not a consequence of synchronization. Rather, both individu-
als have a nutritional state that increases and decreases at the same rate: 
individuals with similar nutritional states maintain similar nutritional 
states on average, while those with different states maintain this differ-
ence on average. Any differences over time only arise through random 
drift. In other words, while nutritional state depends on how individuals 
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Box 6.C State- based Synchronization

Rands et al. (2003) proposed a model of a pair of foragers who, 
based on their own nutritional state and that of their partner, de-
cide whether to forage for food or rest. Here, I present a simpli-
fied version of their model, which captures the essential features of 
the argument they present. Assume that on each day an individual 
must decide between foraging and resting. Foraging incurs a cost 
c due to predation risk but also gives a benefit b/s where b is a 
constant and s is the nutritional state of the individual. The benefit 
in foraging thus decreases inversely proportionately to nutritional 
state. Further assume that if an individual forages at the same time 
as its partner it gains benefit e from dilution of risk. Thus the pay-
off for foraging together with a partner is b/s � c���e and the payoff 
for foraging alone is b/s � c. We assume that resting incurs neither 
benefit nor cost.

What strategy should an individual adopt? First consider the case 
where both individuals in the pair have the same nutritional state, 
s. In this case, if s � b/c then it always is better to forage than to 
rest and both individuals will forage. If s ! b/(c � e) then it always 
is better to rest than to forage and both individuals will rest. For 
the intermediate values of b/c � s � b/(c � e) the maximum payoff 
is obtained if both individuals forage. However, if the focal indi-
vidual forages and its partner rests then the focal individual will get 
the lowest of the possible payoffs. Furthermore, if both individuals 
are resting then swapping to foraging without the certainty that 
your partner will also swap is costly. The individuals thus do best 
if they co- ordinate their foraging and resting, i.e., they synchronize 
their active and inactive periods.

When b/c � s � b/(c � e), the evolutionary game defined in table 1 
is known as a co- ordination game (see chapter 10 for more about 
evolutionary games). There are two evolutionarily stable strate-
gies to such games and deciding which strategy will evolve is not 
straightforward. On the one hand it is optimal, in terms of higher 
benefits, for both individuals to forage. On the other hand, unlike 
resting, foraging is prone to errors resulting from one individual 
failing to co- ordinate. Here, I resolve this co- ordination issue by as-
suming that in repeated iterations over a number of days, whenever 
b/c � s � b/(c � e) an individual will adopt the same behavior as it 
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are synchronized, differences in nutritional state between the two indi-
viduals are largely independent of the degree of synchronization.

If each individual within a group has its own “ideal” point in time 
to perform an action, then as group size increases the heterogeneity of 
rhythms within the group also increases. Conradt and Roper (2003) used 
a model to show that in most situations it is beneficial to group mem-
bers that decisions about the timing of events are made by consensus 
rather than “despotically.” Their argument is based on the principle of 

adopted on the previous day. Nutritional state can now be made 
time- dependent, i.e, represented by st. Individuals rest whenever 
s ! b/(c � e) or when b/c � s � b/(c � e) and both individuals rested 
on the previous day, resulting in a decrease in nutritional state 
i.e., st�1� �st � r. Individuals forage whenever s � b/c or b/c � s � b/
(c � e) and the individuals foraged on the previous day, resulting in 
an increase in nutritional state, i.e., st�1� �st���q. Figure 6.6a shows 
the outcome of such dynamics. The individuals’ foraging bouts 
are periodic and synchronized and their nutritional states remain 
synchronized.

What happens if the individuals have different nutritional states, 
s1,t and s2,t? Figure 6.7 summarizes the conditions under which it 
is optimal for a focal individual to co- operate given its own nu-
tritional state and the state of its partner. If we assume that the 
individuals are aware of each other’s nutritional state, then if�s1,t !�
s2,t�both individuals will always forage when s2,t � b/c and s1,t � b/
(c � e). Likewise, if s1,t ! b/(c � e) and s2,t ! b/c then both individu-
als rest. When b/(c � e) ! s1,t, s2,t ! b/c, it is best for individuals to 
co- ordinate. As in the case of identical nutritional states, however, 
it is not immediately clear upon which activity they should co- 
ordinate. Assuming as before that co- ordination is determined by 
the individual’s previous action, the actions of the two individuals 
become synchronized (figure 6.6b). Interestingly, nutritional state 
does not become synchronized. Instead, foraging is initiated by the 
individual with the worst nutritional state, while resting is initiated 
by the individual with the best nutritional state. As a result, the 
individual with lower nutrition never “catches up” with its partner. 
If r and q are random variables, varying from day to day, instead 
of constant values the same pattern is seen (figure 6.6c). In general, 
there is no correlation between the nutritional states of the indi-
viduals despite a strong synchrony in their foraging patterns.
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Figure 6.6. Simulations of model in box 6.C. Standard parameters are b� �10, c� �5, e� �4, 
r� �0.5, and q� �1. (a) Case where both individuals initially have the same nutritional state 
s1,1� �s2,1�  1. The dots and crosses at the top of the figure indicate days on which individual 
1 and respectively individual 2 foraged. (b) Case where both individuals have different nu-
tritional states s1,1� �5 and s2,1� �1. (c) Simulations of the model where each time step q and 
r are selected uniformly at random with ranges [0.7, 1.3] and [0.2, 0.8] respectively (note 
different time scale).
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“many wrongs” presented in box 4.B. It is better to time events accord-
ing to the average preference, rather than adopting the preference of a 
single individual. Obtaining consensus among heterogeneous individu-
als is difficult, simply because different individuals want different things. 
Conradt and Roper (2007) develop an evolutionary game theory model 
of decision- making in groups of three or more members and show that 
over a wide range of conditions evolutionary stability of consensus can 
be obtained.

A prediction that arises both from Conradt and Roper’s functional 
models and from Kuramoto’s mechanistic model is that, if between- 
individual variation in the timing of events becomes too large then syn-
chrony will break down. Conradt (1998) observed that male- only and 
female- only groups of red deer had more synchronized bouts of activity 
than mixed sex groups. This loss of synchrony could result from differ-
ences between males and females in the amount of food they need and the 
digestion time for this food (Ruckstuhl & Neuhaus 2002). Interestingly, 
within the mixed sex groups the female- female and male- male synchrony 
was much lower than that in the single sex groups. Similar observations 
have been made of alpine ibex (Ruckstuhl & Neuhaus 2001).

In terms of a functional explanation, desynchronization in mixed sex 
groups could be attributed to male harassment of females, competition 
between males in the presence of females, or some other social conflict 
within the group (Conradt 1998). However, such desynchronization is 
also explainable purely in terms of mechanisms. If the distribution of 

Figure 6.7. Evolutionarily stable strategy, according to the model in box 6.C, for a focal 
individual as a function of the focal individual’s nutritional state and the partner’s nutri-
tional state.
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initial frequencies are bimodal, Kuramoto’s model predicts that those in-
dividuals with initial frequencies nearer to the mean initial frequency will 
synchronize, while those with initial frequencies further away from the 
mean will remain close to their initial frequency (Strogatz 2000). Thus 
a proportion of the males become more synchronized with the females, 
increasing the degree of male- female synchrony, above that of separate 
groups, while decreasing male- male synchrony.

In Conradt’s observations there were more females than males within 
mixed groups (Larissa Conradt, personal communication). Under these 
circumstances, Kuramoto’s model further predicts that the pull on the 
males to synchronize with the females is stronger than the pull of the 
males on the females. This pull in opposite directions leads to desynchro-
nization of both sexes, but greater desynchronization among males than 
among females. These predictions are confirmed in Conradt’s observa-
tions of mixed groups, with male- male synchrony near to zero, female- 
female synchrony dropping slightly compared to single sex groups and 
male- female synchrony below that of female- female synchrony. Kura-
moto’s model provides us with null hypotheses about whether groups of 
diverse individuals will synchronize. It is only when these null hypotheses 
fail that we need to invoke additional functional explanations.

Temporal synchronization can produce patterns in the spatial orga-
nization of animal groups. Conradt (1998) hypothesized that the lack 
of synchrony in mixed sex groups leads to segregation of males and fe-
males. If females benefit from leaving an area before males then mixed 
sex groups are more likely to split than same sex groups. Ruckstuhl & 
Neuhaus (2002) found that sexual segregation was more common in un-
gulate species in which males and females were of different sizes and as 
a result had different activity budgets. The question of whether failure 
to synchronize is the primary explanation of spatial segregation in un-
gulates remains controversial. A number of studies have provided mixed 
results about the importance of synchrony in this context and suggest 
that spatial segregation is caused by a range of different factors (Cal-
him et al. 2006; Kamler et al. 2007; Loe et al. 2006; MacFarlane 2006). 
While temporal synchronization is unlikely to be a universal explanation 
of segregation, it remains an important factor in determining the spatial 
patterns produced by animal groups.

Anti- phase Synchronization

Kuramoto’s model explains synchronization through locking of phases. 
Oscillators can, however, synchronize without adopting the same phase. 
Indeed, the first recorded observations of synchronization between 
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pendulum clocks, made by their inventor Christiaan Huygens, were of 
out of phase synchronization (Bennett et al. 2002; Strogatz 2003). Huy-
gens noticed that two pendulums hanging from the same beam became 
synchronized, such that when one pendulum was at its right extreme, 
the other was at its left extreme. This anti- phase synchronization occurs 
because of a weak coupling through lateral motion of the structure upon 
which the pendulums are mounted. Bennett et al. (2002) constructed an 
experimental setup with two pendulums, which allowed them to repro-
duce Huygens’ findings. They developed a mathematical model to show 
that anti- phase synchronization is the only stable outcome for this system 
provided there is sufficiently strong coupling between the pendulums. As 
in the Kuramoto model, synchronization occurs even when the natural 
frequencies of the pendulums are slightly different.

An example of pairs or small groups of animals becoming anti- phase 
synchronized is sentinel behavior. McGowan & Woolfenden (1989) ob-
served small groups of Florida scrub jays and noted when each member 
engaged in vigilance, looking around for potential threats, and foraging, 
looking for food. They found that vigilance was co- ordinated, such that 
periods of vigilance overlapped less than expected than if the decision to 
become vigilant was independent of the behavior of other individuals. 
One of the birds acted as a sentinel while the others fed. The periods of 
sentinel behavior were out of phase with each other, reducing the prob-
ability that a predator could attack unnoticed.

A functional explanation of sentinel behavior poses a challenge, be-
cause the individual keeping watch is losing the opportunity to forage for 
food. What is to stop the sentinel from cheating and skipping its turn to 
continue foraging instead? The dilemma here is similar to that of produc-
ers and scroungers (box 3.B) and is a typical example of social parasitism 
(see chapter 10). Although the group would have the least risk of preda-
tion were individuals to take turns being sentinels, for each individual 
the incentive is to often skip their turn to keep watch. Bednekoff (1997) 
proposed a simple solution to this problem based on selfish sentinels. He 
considered how nutritional state should influence the relative costs and 
benefits to an individual of foraging and sentinel behavior. Individuals 
that have just fed have a lower need for food and thus a greater incentive 
to take a safe position where they can keep watch. Bednekoff’s model pre-
dicted that if being sentinel provided extra safety compared to foraging 
and that if a sentinel detected a predator this information spread to for-
agers then co- ordinated sentinels was an evolutionarily stable behavior.

Bednekoff & Woolfenden performed experiments on pairs of Florida 
scrub jays to test the plausibility of Bednekoff’s model. They found that 
when scrub jays were fed they spent less time feeding and more time 
acting as sentinels (Bednekoff & Woolfenden 2003). Furthermore, the 
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partners of the fed individuals reduced their time acting as sentinels and 
foraged more (Bednekoff & Woolfenden 2006). In pairs of scrub jays 
these responses can lead to a “seesaw” synchronization of feeding and 
sentinel behavior. Individual A finds food, eats it, and then begins to act 
as a sentinel, while individual B searches for food. When individual B 
has found and eaten food, its tendency to become a sentinel increases, 
while individual A’s tendency to feed increases. In this case, and unlike 
the model of in- phase synchronization in box 6.C, anti- phase synchroni-
zation arises from and sustains differences in nutritional state.

Animals in larger groups also exhibit turn taking in sentinel behavior. 
Meerkats forage by digging into the ground, in a manner that makes it 
impossible to observe what is going on around them. The meerkats usu-
ally forage in groups. When not digging, some individuals stand guard, 
looking around for potential predators. Clutton- Brock et al. (1999) ob-
served that meerkats take turns in guarding. When there was no guard 
then the probability that an individual would start guarding was twice as 
high as when there was a guard, and if two or more individuals happened 
to be guarding at the same time one of them would usually stop guarding 
relatively quickly. Turn taking was not in a consistent order, although 
individuals did not tend to take consecutive bouts of guarding. Like the 
scrub jays, an important factor in whether a meerkat would guard was 
whether it had been fed or not. Clutton- Brock et al. (1999) found that if 
they fed meerkats they would guard more often and forage less.

Clutton- Brock et al.’s (1999) experiments “provide no indication that 
the alternation of raised guarding depends on social processes more 
complex than the independent optimization of activity by individuals, 
subject to nutritional status and the presence (or absence) of an exist-
ing guard.” Bednekoff’s (1997) model provides an elegant mathematical 
demonstration of how this guard alternation can evolve. It also provides 
an extension of the seesaw concept and double pendulum anti- phase syn-
chronization to groups of more than two individuals. Simply by aiming 
to maximize their own survival individuals will move out of nutritional 
phase with each other, so that there is usually a single guard with a high 
nutritional level.


