
MANAGERIAL AND DECISION ECONOMICS

Manage. Decis. Econ. 33: 295–309 (2012)

Published online 18 June 2012 in Wiley Online Library
Six Predictions about the Decision Making
of Animal and Human Groups
David J.T. Sumpter*, Natalia Zabzina and Stamatios C. Nicolis

Mathematics Department, Uppsala University, Sweden

(wileyonlinelibrary.com) DOI: 10.1002/mde.2553
*Corresponden
Sweden. E-m

Copyright ©
We review and extend theoretical and empirical studies of how groups make decisions using
combinations of private information and preference copying. We give six tested or testable
predictions arising from models: (i) group decisions involve both true and false cascades;
(ii) a small number of leaders can heavily influence a decision; (iii) individuals in groups
make accurate and fast decisions; (iv) irrelevant alternatives change preferences; (v) optimal
group size depends on the number of options; and (vi) pairs of higher quality options are
more difficult to distinguish than lower quality options. We discuss our approach in the
context of human organisations. Copyright © 2012 John Wiley & Sons, Ltd.
1. INTRODUCTION

There are many ways to model decision making
within groups. Physicists see opinion as a magnetic spin
that points to or away from different options depending
on the spin of your colleagues (Weidlich, 2003;
Suchecki et al., 2005; Weidlich, 2005; Castellano
et al., 2009). Economists and political scientists identify
the rational thing to do, subject to the constraints
imposed by lack of information. Psychologists identify
the heuristics we employ for balancing private and
personal information (Gigerenzer and Todd, 1999;
Katsikopoulos et al., 2010). For animals, behavioural
ecologists look both at how natural selection has shaped
their decisions, along with describing how they interact
with each other (Conradt and Roper, 2005; Couzin,
2009). Evenmicrobiologists are in on the act: describing
the decisions made by amoeba and bacteria by showing
that these organisms can choose between different
quality foods (Dussutour et al., 2010; Latty and
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Beekman, 2011). We start by reviewing some of the
key features of these approaches.

At the core of neoclassical economics is the idea of
the individual as a maximising agent. Individuals make
decisions that maximise some utility function, which
may be economic but can also relate to aspects such
as happiness (Bruni and Porta, 2005). Despite our
everyday experience to the contrary—few people would
claim that they or the people around them are perfectly
rational—there are several good reasons for viewing
rational agents as the standard model for economic
decision making (Binmore, 1999, 2005). One argument
is that although in watching any given individual we
might have the impression of an illogical sequence of
decisions, we see a collective rationality in which bad
decisions are averaged away when the decisions of
many individuals are observed. Furthermore, through
time bad decisions will become less common as indivi-
duals learn the optimal thing to do. Another convincing
argument is that there is no viable alternative to the
rationality model. We want to create a general model
of reality, and this model needs a baseline assumption.
If we say that people are irrational, we might as well
say that they could be doing anything at all. Without
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an assumption about what people do, we cannot build
models and cannot do economics.

The aforementioned arguments alone do not imply
that rationality is the only ingredient in economic
models. Indeed, most economists recognise the limita-
tions of basing models on an all-seeing rationality
(Kahneman, 2003). This recognition has led to the idea
of bounded rationality, where agents are constrained by
the costs of obtaining and processing information.
Incorporating information and opportunity costs allows
the economics approach to be applied to a much wider
range of situations. For example, organisation econom-
ics look at ways in which public and private organisa-
tions can become constrained by their culture: how they
can find themselves with rapidly inflating pay for their
chief executives and exhibit herding towards mediocre
practices (Posner, 2010). Similar questions arise in
political economics, where the focus is on designing
institutions that can avoid the type of agenda sending
that inhibits independence and new ideas (Vermeule
and List, 2010).

The concept of bounded rationality turns away
from the idea of homo economicus, the perfectly
rational utility maximiser, and instead looked at how
people respond in different economic situations (Thaler
and Sunstein, 2008). Despite these adjustments, research-
ers working both inside and outside the field still
regularly attack economics research. Physicists in
particular have provided some of the most scathing
comments and criticism (Farmer, 1999; Sornette,
2003). To a physicist, models should be motivated
first by observation. The physicists look at what
individuals do, in for example buying and selling
shares (finance is physicists’ favourite example of
economic behaviour), and then build models on that
basis. Several behavioural psychologists share this
skeptism of the idea that rationality should be a central
principle in decision making (Gigerenzer and Todd,
1999). Gigerenzer (2006) argues that we should not
see rationality as the starting point and then produce
a list of exceptions where it fails to apply. Instead,
one should start by identifying heuristics that describe
how individuals act in particular situations. Once the
heuristics are identified can one ask questions like ‘In
what environments will a given heuristic work? Where
will it fail?’.

A similar distinction as that between rational and
heuristic approaches comes up in study of the beha-
vioural ecology of animals (Krebs and Davies, 1993).
Here, the two approaches are often called functional
and mechanistic (Sumpter, 2010). The functional
approach is to watch animals and identify how
Copyright © 2012 John Wiley & Sons, Ltd.
behavioural strategies produce increases and decreases
in fitness. Natural selection has acted over many gen-
erations to ensure that individuals that do not increase
their fitness relative to their peers will die out. Animal
behaviour is then understood through studies of what
animals are trying to maximise in different scenarios.
This approach, like that of rationality, is based on
the idea of the individual as the maximising agent
(Grafen, 1999; Houston and Mcnamara, 2005). An-
other approach is to concentrate on mechanisms or
‘rules of thumb’. Let us forget about whether what
animals are doing maximises their fitness or allows
them to optimise some variable or not. Instead, we just
look at what they do, how do they respond to their envi-
ronment, how do they interact with each other and what
are the consequences of these interactions.

Unlike in the heated exchanges between rationalists
and heurists/physicists (Sornette, 2003; Binmore, 2005;
Gigerenzer, 2006; Binmore, 2010; Eckel and Gintis,
2010), the functional and mechanistic approaches to
behavioural ecology are mainly seen as complementary
(Krebs and Davies, 1993; Rankin, 2011). This linking
of approaches is particularly well developed in the study
of collective decision making by animal groups
(Sumpter, 2010). Animals make decisions together in a
wide range of contexts. Birds navigate together and
choose a shared route home (Biro et al., 2006; Nagy
et al., 2010). Fish moving through open water collec-
tively decide which of many sheltered areas is least likely
to contain a predator (Ward et al., 2008, 2011). Ants
decide which of many food sources to feed from (Nicolis
and Deneubourg, 1999; Dussutour et al., 2009). Even
cockroaches collectively decide in which dark corner of
the kitchen they will aggregate (Ame et al., 2004). These
decisions have been studied both in terms of their
mechanisms and how they provide fitness benefits to
group members.

In this paper, we show how, in the context of group
decision making, mathematical models allow one to
achieve a unifying view of the concepts of choice and
rationality. We show how problems regarding rationality
and optimality can be side stepped. We discuss first the
Condorcet model, which represents the optimal strategy
for a group or the optimal usage of information possessed
by all group members. We then turn to the BHW model,
which is a model based on bounded rationality for single
selfish individuals. Both of these are interesting in their
own right but do not provide a ‘rule of thumb’ or a heuris-
tic that is consistent with how real animals behave when
making decisions in groups.

Remarkably, there are a small number of ‘rules of
thumb’ that underlie many situations in which
Manage. Decis. Econ. 33: 295–309 (2012)
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individual animals make decisions within groups. It is
these rules of thumb in the context of group decision
making that are the focus of our review. The most
important of these is positive feedback between group
members (Deneubourg and Goss, 1989). Positive feed-
back occurs when commitment to a particular option
increases as a function of the number of individuals
already committed to it (Deneubourg et al., 1990;
Nicolis and Deneubourg, 1999; Camazine et al., 2001;
Sumpter, 2006). In many animals and humans, this takes
the form of copying behaviour, where the choices of
others are copied by the decisionmaker (Petit et al., 2009).

Another key heuristic in group decision making is
the use of quorums (Sumpter and Pratt, 2009). A quo-
rum response is one in which an animals’ probability
of exhibiting a behaviour increases sharply at a thresh-
old number of other individuals already performing
this behaviour. For example, Temnothorax ants decide
to move to a new nest site when the number of other
ants at that site is exceeded (Pratt et al., 2002); small
groups of sticklebacks follow two or more leader fish
but will ignore a single leader (Sumpter et al., 2008);
and meerkats will only leave a foraging site when at
least two of them have elicited moving calls (Bousquet
et al., 2011).

The study of animal decision making provides a
tight link between theory and experiment. Models of
animal decision making have been developed from
empirical observations and then used to make predic-
tions in further experiments. This research has also
linked the identification of heuristics with questions
of how they produce decision making that benefits
individuals within groups. We present an overview
of this research, focusing on the interplay between
experiment and models. We build around the presenta-
tion of two key models, look at how they have been
applied in the study of animal groups and give a
number of clear cut predictions made by these models.
2. MODELS

In this section, we present three dynamic models
of collective decision making—the BHW model
(Bikhchandani et al., 1992, 1998), the Deneubourg
model (Deneubourg et al., 1990; Nicolis and
Deneubourg, 1999) and the Quorum model (Sumpter
and Pratt, 2009)—along with a static model of opti-
mal group decision making proposed by Condorcet
(Condorcet, 1785).

The dynamic models describe how commitment to
each of two or more options evolves in time. When
Copyright © 2012 John Wiley & Sons, Ltd.
two options are available, there are a fixed number of
individuals n, each of whom has one of three states
of mind: ‘uncommitted’, ‘committed to option 1’
or ‘committed to option 2’. The variable x1 denotes num-
ber of individuals committed to 1, and x2 denotes number
committed to 2; therefore, n� x1� x2 are the number of
uncommitted individuals. Decision making proceeds as
follows. For the uncommitted individuals, we assume
that their rate of deciding to commit depends on (i) a
parameter measuring the attractiveness or ‘quality’ of
the two options, denoted as q1 and q2, respectively, and
(ii) the number of individuals already committed to each
of the options. In other words, the rate of commitment
depends on both a private evaluation of the options and
social information. We refer to q1 and q2 as the intrinsic
quality of the two options.

A basic assumption adopted throughout this work
is that of ‘homogeneous’ populations, in the sense that
all individuals share common characteristics and, in
particular, perceive ‘quality’ in an identical fashion.
Still, even within this framework, a particular individ-
ual is unable to decide in a fully reliable fashion which
option is best and which variation can occur in deci-
sion outcome. Indeed, when x1 = x2 = 0, then the prob-
ability that an individual will choose option 1 under all
models is p1 = q1/(q1 + q2). This limited reliability of
private information is the key reason for the important
role played by social information.
2.1. Condorcet’s Model

Before we describe the three dynamic models, it is
worth pausing to consider what would be the optimal
utilisation of individual information when the aim is to
maximise the group’s probability of choosing correctly.
If each individual has a probability p1 of choosing the
best option (we assume option 1 is best), then the
probability that a majority of an odd number of N
individuals has correct private information is

C N; p1ð Þ ¼
XN

i¼ Nþ1ð Þ=2

N
i

� �
pi1 1� p1ð ÞN�i (1)

This is the famous Condorcet jury theorem for
decision making (List, 2004; Ame et al., 2006;
Sumpter and Pratt, 2009). C(N, p1) rapidly nears 1 as
N increases, implying that larger groups make better
decisions.

The Condorcet theorem implies that if each individ-
ual can independently assess the evidence and a major-
ity vote is taken, then large groups will almost always
make correct decisions. Given this interpretation, why
Manage. Decis. Econ. 33: 295–309 (2012)
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do we need to discuss other dynamic models of decision
making? For animal groups, one answer is clear. Most
animals lack the cognitive power to recognise that they
are in such a decision-making situation, create a suitable
voting mechanism and elect a centralised authority to
count up the votes. For humans, another answer to
the need for dynamic models is that in many cases,
decisions are made sequentially and through, for exam-
ple, discussion. Often, we cannot wait until everyone
has formed an opinion before we start to integrate
opinions (Sumpter, 2010). Although our cognitive
power is greater than animals, there are many situations
in which human groups fail to allow all group members
to independently assess information in the manner
suggested by Condorcet.
2.2. The BHW Model

The BHW model describes the rational strategy for a
sequence of decision makers, each attempting to
optimise her own probability of making the correct
decision (Bikhchandani et al., 1992, 1998). Under the
model, the first individual chooses on the basis on
private information and thus chooses option 1 with
probability p1. The second individual in the sequence
now has access to the information of the first individual,
along with his own information. If his private informa-
tion agrees with that of the first individual, then he will
choose the same option. If the private information is
inconsistent with the first individual, then he will choose
the option at random. The probability of choosing option
1 for the second individual is thusp21 þ 1� p1ð Þp1 ¼ p1.
For all individuals from the third onwards, the rational
action is to look at the previous two choices. If both
are for the same option, then the individual should
always choose that option; if the choices differ, he or
she should choose according to her own preference.
Figure 1. How probability of choosing an option changes w
p1 = 0.6; (b) the Deneubourg model with k= 1, x2 = 2 and m=

and m= 4 (eq

Copyright © 2012 John Wiley & Sons, Ltd.
Figure 1(a) shows how the probability of choosing
option 1 changes as a function of the number of preceding
individuals that have chosen that option.

The BHW model predicts a rational information
cascade, whereby after only a small number of
decisions, all individuals will choose the same option.
The accuracy of this cascade is however rather low.
For example, for p1 = 0.6, the probability of a correct
cascade is 0.63. Furthermore, the probability of a correct
decision does not increase with group sizes greater than
two individuals. This result can be contrasted with equa-
tion (1), where larger groups become more and more
accurate. As such, the BHWmodel provides an example
of how what is best for the individual is not best for the
group (Vermeule and List, 2010). The third person in
the sequence has no incentive to reveal its information
for the benefit of the fourth person and instead acts on
the information available to it at the point of making a
decision. This property makes BHW a good conceptual
model of, for example, stock market investor behaviour
(Conlisk, 1996), where ‘incorrect’ cascades are com-
monly observed (Sornette, 2003).

Does the BHW model agree with data on human
decision making in an experimental context? Anderson
and Holt performed the first experiment testing the
BHW model, using balls drawn from urns (Anderson
and Holt, 1997). When the private information of the
third individual in a sequence was inconsistent with that
of the two preceding individuals, he or she disregarded
his or her own information in 70% of cases, whereas
in 26% of cases, experimental subjects behaved ‘irratio-
nally’ in trusting their own information. These results
have not been particularly well supported in further tests
and other experimental setups. For example, in a similar
setup, experimental subjects were willing to pay for
their own information even when they could see that
two individuals had already chosen one particular
ith number already committed in (a) the BHW model with
2 (equation (4)); and the Quorum model with a= 0.05, T= 3
uation (3)).

Manage. Decis. Econ. 33: 295–309 (2012)
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option (Kubler and Weizsacker, 2004). Similarly, in
experiments where economics students are presented
with a paper and pencil exercise of calculating the best
strategy, they err on the side of personal information
use even when this is not a mathematically correct
choice (Huck and Oechssler, 2000; Spiwoks et al.,
2008). Overall, these experiments support the existence
of information cascades, but in contrast to the prediction
of the BHWmodel, the probability of a cascade starting
increases with group size and does not necessarily start
after two individuals have made their choices (Kubler
and Weizsacker, 2005).
2.3. The Deneubourg Model

One of the first models highlighting the role of positive
feedback in the context of group decision making is due
to Deneubourg and co-workers (Deneubourg et al.,
1990; Nicolis and Deneubourg, 1999). They chose the
following functional form for the rate of commitment
to option 1:

q1
k þ x1ð Þm

k þ x1ð Þm þ k þ x2ð Þm (2)

This equation implies that the more individuals that
have already chosen option 1 (x1), the greater the rate
of commitment to that option. Figure 1(b) gives an
example of how rate of commitment to option 1 changes
as a function of x1, for fixed x2. The parameters m and k
determine the form of the response. Larger values of
k mean less attention is paid to the decisions of others.
The parameter m measures the sensitivity of the
particular choice. The larger the m, the sharper the
choice, and for m> 1, positive feedback for the more
popular option is disproportionally stronger than for
the less popular option. For a detailed discussion of
the assumptions and role of the parameters in this
model, see Sumpter (2010).

Deneubourg’s model was initially proposed in the
context of foraging by ants, but it was soon noted by
Kirman that this model could be equally relevant to
human decision making (Kirman, 1993). Granovetter
(1978) and Shelling (1978) had earlier proposed
similar models for tipping points or thresholds at
which a decision to adopt a particular action is taken.
The underlying assumptions of such models appear
to be consistent with experiments on both information
cascades and human conformity. In information
cascades, individuals only adopt a particular choice
when others have also adopted that choice (Kubler
and Weizsacker, 2005). For example, Milgram et al.
Copyright © 2012 John Wiley & Sons, Ltd.
(1969) placed a small stimulus crowd of individuals,
each of which looked up at a window of a nearby
building, on a New York Street. They then observed
passersby as they walked past the crowd. They found
that the larger the crowd, the larger the proportion of
passersby who would stop and/or look up. Gallup
et al. (2012) repeated these experiments in Oxford
and found similar results, although with a weaker
response by passersby. Figure 2(a) and (b) shows
how proportion of passersby looking up increases with
crowd size in both cases.

Similar responses have been identified in conformity
experiments (Asch, 1955; Latane and Wolf, 1981). In
these experiments, experimental subjects are asked to
answer a simple question after hearing a group of
confederates give an incorrect answer, subjects have a
probability of answering incorrectly which increases
with group size (Figure 2(c)). Here, the probability of
answering incorrectly increases sharply when the size
of the incorrect group exceeds two or three individuals
(Asch, 1955). The social contexts of the Milgram and
Asch experiments are very different. In the Milgram
setup, copying is probably the outcome of information
transfer about the location of interesting features of the
environment, whereas in the Asch setup, it is related to
social conformity. In both cases, the form of the re-
sponse is similar and can be modelled in a similar
manner.

Wewould note that the aforementioned experimental
evidence is limited and not collected for the purpose of
testing the Deneubourg model. We present it here to
provide some background for why the Deneubourg
model and the Quorum model, which we will discuss
in the next section, are relevant in the context of group
decision making by humans. We would however
go as far as to claim that experimental work up to
now on humans is more consistent with models in
which commitment increases smoothly at a particular
threshold (i.e. as in Figure 1(b)) than with BHW type
models, where there is an all or nothing response to
the behaviour of others (i.e. as in Figure 1(a)). The
Deneubourg model is also more in keeping with the
idea that heuristics, rather than some pure form of ra-
tionality, should underlie an individual’s reaction to
private and social information.
2.4. The Quorum Model

Sumpter and Pratt (2009) proposed a model based on
the idea that individuals observe the choices of others
with respect to only one option at a time. The idea is
Manage. Decis. Econ. 33: 295–309 (2012)
DOI: 10.1002/mde



0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8
P

ro
po

rt
io

n 
lo

ok
in

g 
up

Size of stimulus group

(b)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n 

lo
ok

in
g 

up

Size of stimulus group

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

P
ro

po
rt

io
n 

of
 e

rr
or

s

Number of opponents

(c)

Figure 2. Responses of humans to the behaviour of others. The relationship between the probability that passersby will copy the
gaze of the stimulus group as a function of stimulus group size in (a) New York (Milgram, 1969) and (b) Oxford (Gallup et al.,
2012). (c) The probability that an individual will concur with a group of opponents as a function of the number of opponents
(Asch, 1955). The fitted line is the function, P(N) = bNm/(Tm+Nm) is the observed frequency of looking up and N is the group
size (opponents or crowd). The fitted parameters, T, m and b characterise the type of response: b is the maximum proportion
of individuals that will look up, T is the threshold group size at which b/2 individuals will look up and m determines the shape
of the response. The parameters are (a) b=0.91, T=1.2 andm=1.05; (b) b=0.63, T=6.4 andm=1.42 and (c) b=0.35, T=2.13

and m=6.66.
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that the individual finds an option at some rate and then
assesses it using both an intrinsic probability of accept-
ing and a probability of accepting that increases with
the number of individuals that have already accepted
it. As such, the rate of commitment to option 1 takes
here the form

q1 aþ 1� að Þ xm1
Tm þ xm1

� �
(3)

Here, a is theminimal probability to choose an option,
T is the quorum threshold at which the rate of commit-
ment suddenly increases and m, like in Deneubourg’s
model, is the steepness of this response. This is illustrated
in Figure 1(c).

Although sharing common mechanisms, the Quorum
and Deneubourg models differ in one important point.
The choice functions in Deneubourg’s model (2) depend
on both the number choosing option 1 and the number
choosing option 2 and are thus strongly coupled. In the
Quorum model, the choice functions are independent
Copyright © 2012 John Wiley & Sons, Ltd.
to each other. Accordingly, the coupling in the choice
between two options is weak and rests entirely on
the competition between the pool N� x1� x2 of uncom-
mitted individuals. The Quorum model demands very
limited cognitive powers on the part of individuals. In
particular, they have no way of directly comparing the
two options. It is assumed that rejecting one option does
not increase an individual’s probability of accepting the
other. The population already committed gives indivi-
duals an indirect method to gather information about
available options.
3. MODEL PREDICTIONS

In the previous section, we presented three dynamic
models of decision making and provided background
on their relevance to human and animal decisionmaking.
In this section, we investigate what the latter two models
imply about the outcome of decision-making processes.
Manage. Decis. Econ. 33: 295–309 (2012)
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We organise this section under a number of subheadings,
each of which describes a particular set of predictions
obtained from the Deneubourg and Quorum models.
Here, we refer only to model predictions and to cases
where these predictions have been supported by experi-
ments on animal groups, and we return to a discussion
of human decision making in the discussion.
3.1. Group Decisions Involve Both True and False
Cascades

Figure 3(a) shows the outcome of a single Monte Carlo
simulation of the Deneubourg model (Nicolis et al.,
2003; Nicolis and Dussutour, 2008). In the simulation,
we start withN uncommitted individuals. The stochastic
rate of committing to an option is then determined by
equation (2), and individuals commit one after another
to one of the options. In this simulation, there is a
cascade for superior option 1. A small initial preference
for option 1 becomes strongly exaggerated, and by the
end of the simulation, nearly all individuals have chosen
option 1. Whereas this simulation shows a true positive
cascade, where nearly all individuals choose the
Figure 3. (a)–(b) A Monte Carlo realisation of the time evolu
selection of the best option. (a)–(c) Deneubourg’s model for
(b)–(d) Sumpter and Pratt model for parameter values T= 10, m

tions equal

Copyright © 2012 John Wiley & Sons, Ltd.
superior option, these parameters also allow for false
positive cascades, where nearly all individuals choose
the inferior option.

Similar results are shown in Figure 3(b) for the
Quorum model. The main difference between the
Deneubourg model and the Quorum model is that in
the latter, there is an initial build up period where
commitment to both options is slow. Option 1 then
reaches a threshold commitment level, and further
commitment to it then rapidly accelerates. Both models
predict a J-shaped distribution of final decision outcome
(Figure 3(c) and (d)). The peaks of these distributions
show that the most common outcomes are for nearly
all or nearly none of the individuals to choose option 1.

U-shaped (rather than J-shaped) final decision
distributions occur when options 1 and 2 have the
same quality. Such distributions have been shown
experimentally in a whole range of animal species.
The standard experimental set-up is to offer a group a
choice between two identical options. The most well-
studied example are pheromone-laying ants, which lay
stronger to one of two equal options (Beckers et al.,
1992a,1992b; Sumpter and Beekman, 2003; Jeanson
tion of x1 and x2 and (c)–(d) probability distribution of the
parameter values k= 5, q1 = 1, q2 = 0.5, m= 2 and N = 40.
= 9, q1 = 1, q2 = 0.5, a= 0.1 and N= 40. Number of realisa-
to 5000.

Manage. Decis. Econ. 33: 295–309 (2012)
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et al., 2004; Dussutour et al., 2009). Similarly, spiders
construct draglines between the bottom and only one
side of the two ends at the top of the t-shaped structure
(Saffre et al., 2000); when confronted with the choice
between ascending from one of two ends of a t-shaped
structure, weaver ants build a chain down from only
one side (Lioni and Deneubourg, 2004); caterpillars
forage on only one of two available branches (Dussutour
et al., 2008; Nicolis et al., 2008); cockroaches aggregate
under only one of two available shelters (Ame et al.,
2004, 2006). J-shaped distributions are often observed
when groups are offered two different options. For
example, when groups of sticklebacks show two slightly
different replica fish going in different directions, they
nearly all follow the same ‘leader’ (Sumpter et al.,
2008; Ward et al., 2008). Some leaders are however
more popular than others, and this leads to one peak of
the distribution of number of followers being larger for
one of the leader types (i.e. as in Figure 3(d))
3.2. A Small Number of Leaders can Induce a
Decision

All three models share the idea that there exists a
threshold beyond which the response becomes effective.
In Deneubourg’s model, the threshold is determined by
parameter k, whereas in the quorum model, it is charac-
terised by T and in some respects by parameter a, which
accounts for a minimal probability to commit to an
option. Like in the BHW model, the decision outcome
depends strongly on the choices of the first individuals
to decide, although in the case of the Deneubourg and
Quorum models, the choice is not as extreme.
a b
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Figure 4(a) shows the mean level of commitment to
one option achieved eventually (i.e. in the steady state)
by the population as a function of the proportion of
leaders for the Deneubourg model for four different
group sizes. An increase of fraction of initially informed
individuals leads to a highly nonlinear response of the
fraction of population settling eventually to the particu-
lar option favoured by the initial bias. The sharpness
of this response increases significantly with the size N
of the group. In other words, given the same initial
proportion of leaders, a large group of individuals will
be led more strongly than a small one. As a result, only
a small number of leaders are required to lead a large
group. This result goes some way to explaining why
large animal flocks and swarms can be led by just a
small number of informed individuals (Couzin et al.,
2005; Beekman et al., 2006; Oldroyd et al., 2008;
Schultz et al., 2008; Ward et al., 2008).

The situation becomes more involved for the
Quorum model (Figure 4(b) and (c)). When the thresh-
old T is large (Figure 4(b)), the results partially resemble
those described by Deneubourg’s model, although the
sharpness of the response for different N in the quorum
model is less pronounced. The situation is reversed
when T is smaller (Figure 4(c)). Small populations
now follow leaders more strongly than large popula-
tions. This result can be explained by the fact that infor-
mation is shared only locally in the Quorum model. If
the group size is large, then because each individual sees
only one of the options at a time, the threshold is
exceeded at both options. The options then become
more or less indistinguishable, and the probabilities to
choose either option 1 or option 2 become equal. On
the contrary, the Deneubourg model, where information
c

N = 5
N = 10
N = 100

formed individuals
0.4 0.8 0 0.4 0.8

proportion of initially informed individuals for N= 5, 10 and
q1 = q2 = 1 and m= 2. (b)–(c) Sumpter and Pratt model for

, m= 2 and T= 0.5 (b), T= 0.1 (c).
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about all options is simultaneously available, becomes
deterministic beyond some threshold, and all indivi-
duals choose the most popular option. In many bio-
logical situations, individuals cannot compare all
options, and we see the outcome predicted by the
Quorum model (Pratt et al., 2002). For example, colo-
nies of Temnothorax ants, which use a quorum thresh-
old to decide whether to commit to a new nest site, often
initially split when offered two nests that many ants
discover (Pratt and Sumpter, 2006). Similarly, larger
numbers of cockroaches split between two shelters,
whereas smaller numbers aggregate under the same
shelter (Ame et al., 2006).

3.3. Individuals in Groups Make More Accurate
and Faster Decisions

Up to now, we have considered models in which once
an individual commits to an option, then it cannot
‘uncommit’. There are many situations in which indivi-
duals can retire from the decision-making process. For
example, those participating earlier in the process can
disappear out of the sight of those currently making a
decision. With the use of the assumption of an exponen-
tially fading effect of earlier decision makers, the rate of
commitment for two options can be expressed as two
coupled differential equations

dx1
dt

¼ fq1
k þ x1ð Þm

k þ x1ð Þm þ k þ x2ð Þm � nx1

dx2
dt

¼ fq2
k þ x2ð Þm

k þ x1ð Þm þ k þ x2ð Þm � nx2
(4)

Here, we have assumed that there is a constant flow
f of decision makers who make a decision one after
another. We have also assumed that these remain
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committed to an option for a time proportional to 1/n
before becoming uncommitted. This model differs
from that of the previous sections in that the number
of individuals is not conserved, but rather, the flow
is constant. The best way to interpret this model in
biological terms is to think of a constant flow of ants
leaving their nest or fish swimming up a channel. Each
of these animals approaches a branching bridge where
it makes a decision to go left or right as a function of
the intensity of a signal left by the number of indivi-
duals that have already gone left or right (i.e. as in
equation (4)). This flow is inexhaustible, but over
time, the effect of the decision of previous choices
fades with rate n.

Figure 5(a) gives the equilibrium solution of
equation (4), that is the values of x1 that satisfy
dx1/dt=0 and dx2/dt=0. As the flow rate increases, the
system switches from having one stable state with a
small majority committed to the option 1 (again, q1> q2)
to having two steady states with stronger commitment to
one of the two options. In this latter situation, there is one
steady state corresponding to a high level of commit-
ment to the highest quality option and another stable
state corresponding to commitment to option 2. Like in
the J-shaped distributions of Figure 3c, the chosen
option depends on initial conditions. For example, in
Figure 5a, the arrows show how different initial commit-
ment levels will evolve. If commitment is initially strong
for the lower quality option, then the system moves
towards choosing this option.

Figure 5(b) and (c) gives two measurements of the
speed of decision making. The first measurement
(Figure 5(b)) is the value of the eigenvalues associated
with each of the steady states of equation (4). Eigenvalues
here measure the rate of convergence to the steady state,
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and a larger magnitude implies a faster approach to that
steady state. The eigenvalue associated with a choice of
x1 is always negative (solid line in Figure 5(b)) because
this state is always stable. Furthermore, its magnitude
depends upon f, reaching a minimum when f=0.156
(gray dot in Figure 5(b)). For f> 0.156, increasing f
leads to an increasing magnitude of the eigenvalue and
thus faster decisions. The second measure of decision-
making speed is taken directly from numerical solution
of equation (4). This confirms our eigenvalue analysis.
There is a minimum value of f at which decisions are
slowest, after which speed of decision making increases.

We now turn to accuracy of decision making. Deci-
sion accuracy depends on whether or not the best
option is chosen, as well as the level of commitment
to that option. In Figure 5(a), when f= 0.1, only
58% chooses the best option at equilibrium. This is
to be compared with f = 0.6 where 99% chooses the
best option. On the other hand, when f= 0.1, this
small majority always chooses the better option,
whereas when f= 0.6, there is an alternative false
cascade steady state where nearly all individuals
choose option 2. We thus define accuracy to be a com-
bination of (i) the proportion of individuals committed
to the better option and (ii) the proportion of cases
where this option is selected over the less favourable
one. This latter quantity depends on initial conditions
and/or random factors and cannot be calculated from
equation (4) alone. We therefore use a Monte Carlo
simulation to calculate (ii) (Nicolis et al., 2003;
Nicolis and Dussutour, 2008).

Figure 6 illustrates how the accuracy of decision
making depends on flow rate f. Figure 6(a) presents
the proportion of individuals selecting the higher
quality option in the case of a true cascade. This plot
corresponds to the upper branch of Figure 5(a).
Figure 6(b) provides the number of cases in which
the higher quality option is preferred over the total
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number of Monte Carlo realisations (i.e. cases in
which x1> x2 at steady state). Figure 6(c) multiplies
these curves pointwise to provide an overall measure
of how quality of decision depends on flow rate f
for different numbers of options. In all cases, the stron-
gest bias to the highest quality option occurs near to the
bifurcation point,f*, where the system goes from one to
more than one steady states.

Taken together, Figures 5 and 6 describe how differ-
ent flow rates produce different levels of speed and
accuracy. It is interesting to note the changing relation-
ship between speed and accuracy as we increase f.
When f is very small, increases in flow rate lead to an
increase in accuracy but a decrease in the speed. Here,
increased accuracy is produced by the information
provided by the decisions of others, but the time taken
to reach the equilibrium increases because the equilib-
rium is moving further away from a 50/50 split between
option 1 and option 2.

When f> 0.156, speed now increases with flow
rate. Accuracy also continues to increase. Because both
speed and accuracy increase with flow rate, it is benefi-
cial for the group to increase its flow rate until at
least f* = 0.320. For flow rates indicated with a light
grey line in Figures 5(c) and 6(c), we see that both speed
and accuracy increase with flow rate up untilf* = 0.320.
The simultaneous increase can be explained by the fact
that speed by which information is communicated
increases with flow. Provided this flow is not too fast,
then good decisions are quickly communicated through
all group members (Conradt, 2011). This prediction has
been shown to hold for fish (Ward et al., 2011). When
the number of fish swimming up a channel was
increased, the fish were able to detect a predator faster
and more accurately than when alone.

Past f* decision accuracy starts to fall, whereas
speed continues to increase. Here, there is a trade-off
between speed and accuracy: increasing the flow leads
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to increased speed but decreased accuracy (Franks
et al., 2003; Marshall et al., 2006; Sumpter and Pratt,
2009; Conradt, 2011). However, given that for a wide
range of parameters accuracy is not traded off against
speed, the relevance of this trade-off is of limited
relevance with respect to group size.
3.4. Irrelevant Alternatives Change Group
Preferences

Several recent studies have begun to investigate the
collective rationality of distributed biological systems
(Edwards and Pratt, 2009; Latty and Beekman, 2011;
Sasaki and Pratt, 2011). A striking experimental result
is that a cellular slime mould Physarum polycephalum
violates independence from irrelevant alternatives
(IIA) because a new option of lesser value apparently
alters the value of two superior options (Latty and
Beekman, 2011). Such preference changes can be
classified as ‘irrational’ (Luce, 1959).

Positive feedback is implicated in the formation of
tube networks in slime moulds (Tero et al., 2007; Ito
et al., 2010), making the Deneubourg model a good
model of how slime moulds make decisions. Nicolis
et al. (2011) investigated the Deneubourg model in the
case of more than two options. The introduction of a
third option whose attractiveness is equal to the second,
poorer option changed the relationship between flow
and probability of choosing option 1. These results are
shown in Figure 7(a). The results in Figure 7(a) thus
go some way to explaining the outcome of the Latty
and Beekman (2011) experiments. Changing the
number of options, while keeping the mass of the slime
mould constant, means changing the proportion of
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instances in which particular options will be chosen
(Nicolis et al., 2011).

3.5. Optimal Group Size Depends on the Number
of Options

Nicolis et al. (2011) extended the aforementioned
results to any number of options. Figure 7(b) gives
the quality measure for an exhaustive scan of the two
principal parameters of the model for multiple options,
namely number of options and flow rate f. Again, the
maximal decision quality occurs near the bifurcation
point, f*. The position of the bifurcation point
increases linearly with the number of options, as
witnessed by the rightward drift of the maxima of
the response curves in Figure 7(a).

For any given number of options, the decision-
making outcome is different. In particular, the flow level
at which the highest quality option is chosen most often
depends on this particular value.We can see that the flow
level f* that is optimal for choosing between, for exam-
ple, two options is not optimised for choosing between
three or more options. Likewise, a flow level that might
make good decisions between six options can perform
poorly when faced with a decision between two. This
result is counterintuitive because we would not expect
a system capable of coping successfully with a complex
medium offering a large number of options to make a
worse decision when confronted with a more restricted
environment involving a smaller number of options.

3.6. The Influence of Intrinsic Quality of the Pair

How do the intrinsic values of the qualities of the
options influence the decision-making process? Figure 8
shows the decision quality as a function of parameters
b
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m and q1 measuring the steepness of response and the
quality of the better option (cf. equation (4). For each
value of q1, q2 is set such that p1 = q1/(q1 + q2) is kept
constant (and equal to 0.56). These results reflect the
idea that the options become more and more valuable
whereas their relative importance remains the same.

The optimal values for the decision quality changes
as a function of both m and q1. When m = 2, the group
is unable to make good decisions when confronted
with two poor options. If the steepness of the response
is larger, for example m> 3, the group becomes
unable to choose between two good options. On the
other hand, the group is more able to detect the better
option among options that are both poor. These results
mean that the capacity to perform optimal decisions is
due to not only the relative quality of options but also
the steepness of response to the behaviour of others.
4. DISCUSSION

That decision making of animals and humans involve
cascades of commitment to particular options is widely
accepted as an empirical fact. For animals, the evidence
for this comes from studies of cockroaches (Ame et al.,
2004, 2006), social spiders, various species of ants
(Beckers et al., 1992b; Sumpter and Beekman, 2003;
Dussutour et al., 2009), fish (Sumpter et al., 2008;Ward
et al., 2008, 2011), chickens (Collins and Sumpter,
2007), meerkats (Bousquet et al., 2011) and monkeys
(Petit et al., 2009). Humans are prone to peer pressure
(Asch, 1955; Latane andWolf, 1981) and copying. Indi-
viduals’ choices depend on the choices of others when
deciding what trends to follow (Salganik et al., 2006),
Copyright © 2012 John Wiley & Sons, Ltd.
whether to find a job (Hedstrom, 2005) and what shares
to buy (Sornette, 2003).

We have shown that the Deneubourg model makes a
large number of testable predictions about group deci-
sion making involving copying or positive feedback.
Many of these predictions have been tested empirically
for animal groups and presented here. J-shaped distribu-
tions of true and false cascades, improved decision mak-
ing with group size and changing preferences with
increased numbers of alternatives have all been tested
empirically for particular species. Other predictions,
such as how the optimal flow rate depends on the
number of options, remain to be tested.

The Deneubourg and Quorum models, as well as
similar models by Granovetter (1978), Shelling (1978)
and Hedstrom (2005), are in fact generic models
generic models for the type of positive feedback
and quorum/threshold-like heuristic employed by
animals when making decisions. The same general-
ity cannot be claimed for the BHW model, which is
derived from a ‘bounded rationality’ argument. For
making quantitative predictions about animal groups,
we have argued that the BHW model overestimates
the importance individuals place in social as opposed
to private information. It also fails to account for a
softer functional response that individuals use when
deciding which group to follow (Figure 1). These prop-
erties lead the BHW model to predict copying cascades
more frequently than is observed in practice. It also fails
to predict an increase in decision-making accuracy with
group size.

The recent prediction and experimental confirma-
tion of fast and accurate decision making by systems
based on positive feedback and quorums is a key
development in animal studies (Pratt and Sumpter,
2006; Sumpter, 2010; Ward et al., 2011). Copying
behaviour is often described in the context of human
decision making as a problem for the individual within
the group. It is suggested that it leads to reinforcement
of unpopular norms (Willer et al., 2009), market
crashes (Bikhchandani et al., 1998; Sornette, 2003),
the prevalence of ‘yes men’ in intelligence organisations
(Posner, 2010) and social problems (Granovetter, 1978;
Hedstrom, 2005; Hedstrom et al., 2008). Although the
existence of false cascades justifies the problem status
attributed to positive feedback in some cases, it is
important not to forget the possibility that false cascades
may also arise as a side effect of systems in which deci-
sions are on the whole accurate and efficient (Sumpter
and Pratt, 2009).

It is in this sense that we see work on animal decision
making as a case study in what is now known as the
Manage. Decis. Econ. 33: 295–309 (2012)
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heuristic approach (Gigerenzer, 2006). Over 20 years
ago, Deneubourg and co-workers captured the basic
properties of positive feedback and quorum response
heuristics in a simple model. The assumptions of the
model were then empirically validated on ants and other
species. More recently, the empirical questions have
turned to how ants, fish and other species can use these
heuristics to discern quickly and accurately between two
options of varying quality. In taking the heuristic ap-
proach, this last step is of central importance because
it lays the ground for explaining why these heuristics
evolved through natural selection (an argument that we
do not pursue here, but see Sumpter, 2010). Through this
approach, the link between heuristics and optimality
becomes clear. First, we find out what individuals do,
and then we look at the consequences of their actions.
We hope that the work presented here will encourage a
similar approach in the study of decision making within
human organisations.
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