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Abstract

Spatially explicit individual-based models are widely used in ecology but they areoften difficult to
treat analytically. Despite their intractability they often exhibit clear temporal and spatial patterning.
We demonstrate how a spatially explicit individual-based model of scramble competition with local
dispersal can be approximated by a stochastic coupled map lattice.The approximation disentangles
the deterministicand stochastic element of local interaction and dispersal. We are thus able to
understand the individual-based model through a simplified set of equations. In particular, we
demonstrate that demographic noise leads to increased stabilityin the dynamics of locally dispersing
single-species populations. The coupled map lattice approximation has general application to a range
of spatially explicit individual-based models. It provides a new alternative to current approximation
techniques, such as the method of moments and reaction–diffusion approximation, that captures both
stochastic effects and large-scale patterning arising in individual-based models.
© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Spatially explicit individual-based models are commonly used to understand and study
the behaviour of ecological systems (DeAngelis and Gross, 1992; Czaran, 1998; Diekmann
et al., 2000). Applications of these models have been both phenomenological, where
general properties of ecological systems are elucidated through the study of a model
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(Ermentrout and Edelstein-Keshet, 1992; Nowak and May, 1992; Boerlijst et al., 1993;
Bolker and Grenfell, 1995; Pacala and Tilman, 1996; Iwasa et al., 1998; Keeling et al.,
2000), and quantitative, where specific predictions about a system can be made and direct
comparisons drawn to an experimental or field-based system (Keeling et al., 2001; Kerr
et al., 2002). The strength of individual-based modelling is that direct observations of how
individuals act and interact can be specified andincluded in a model, thus forcing precise
thinking and developing intuition abouthow the studied system functions.

It is often difficult to treat spatially explicit individual-based models analytically. An
intriguing question therefore is whether it is possible to approximate their qualitative
behaviour in a small number of analytically tractable equations. To address this problem,
Rand and Wilson (1995)used delay embedding techniques to show that the dynamics
of a spatial resource-predator–prey model could be captured in a set of four differential
equations. In a similar spirit,Pascual and Levin (1999)describe a spatial predator–prey
model and show that when sampling of the population is made at the appropriate spatial
scale the dynamics are well approximated by two differential equations. Such observations
are encouraging since they indicate that, on some spatial scale at least, the population
dynamics of spatial individual-based models canbe approximately equivalent to those of a
smallnumber of differential equations.

Broadly speaking, there are two well established approximation techniques for
the reduction of spatially explicit individual-based models: thereaction–diffusion
approximation and themethod of moments. The reaction–diffusion approximation deals
with models where individuals follow a random walk and are so abundant that their
distribution can be regarded as continuous in space (Murray, 1989, Chapter 9). Diffusion
approximations break down when the stochastic behaviour of a few individuals becomes
important. For example, if reproduction takes place at discrete times while dispersal is a
continuous diffusion process then population spread can in reality be determined by small
numbers of individuals jumping ahead of a travelling wave rather than by an assumed
population wave front (Mollison, 1991; van Baalen, 2000).

The method of moments (Bolker and Pacala, 1997) accounts for the local spatial
correlations which can arise from discrete events. The dynamics of the spatial distribution
are approximated by studying how the mean, variance and (possibly) higher moments
of this distribution evolve in time. A first-order moment approximation assumes that the
population is well-mixed and stochastic fluctuations can be ignored, resulting in a non-
spatial system of ordinary differential equations. A second-order approximation includes
evolution equations for the variance as well asthe mean, and is often sufficient to capture
much of the spatial correlation in the system, both quantitatively and qualitatively. The
technique ofpair approximation (Sato and Iwasa, 2000; van Baalen, 2000) is essentially
the method of moments applied to probabilistic cellular automata. Second-order pair
approximation involves estimating differential equations for the rate of change of pairs
of neighbouring cells in a cellular automata, thus capturing how local correlations between
neighbouring cells evolve.

Second-order moment methods typically fail to capture any large-scale emergent
patterns, such as spiral waves or checkerboardpatterns, that are often seen to arise out of
spatially explicit individual-based models [seeJohnson and Boerlijst (2002)for examples
of such large-scale patterns]. By their nature, such patterns give rise to large higher-order
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moments, corresponding to skew or bimodalityin the spatial distribution. Accounting
for third-order moments becomes highly cumbersome and produces approximations that
are difficult to understand and not guaranteed to give any useful information about the
spatial distribution (Bolker et al., 2000). While some of these large-scale patterns might be
captured by a reaction–diffusion approximation, the problems associated with stochastic
actions of small numbers of individuals remains. There thus exists a large class of spatial
individual-based models for which we currently have no means of approximating and
establishing analytical understanding.

Here we develop a third alternative approximation technique aimed at establishing
at least some analytical understanding of spatially explicit individual-based models with
large-scale emergent patterns. We call this approach acoupled map lattice approximation.
To illustrate its application we use an example of a model that exhibits checkerboard
patterns and chaotic oscillations. We begin by describing the individual-based model, then
its coupled map approximation and ultimately compare the model and the approximation
with an aim to understanding how local dispersal stabilises the population dynamics.

2. Model and approximation

2.1. The spatially explicit individual-based model

The model we study here is a local-dispersal extension of one proposed bySumpter
and Broomhead (2001)for the parasitism of honey bee brood cells byVarroa mites. Al-
though our model is no longer appropriate forVarroa mite reproduction—since mites dis-
perse globally rather than locally between reproductive phases—it would be realistic for
modelling the reproduction of other species exhibiting scramble competition over discrete
resource sites, such as the bean bruchidCallosobruchus phaseoli (Toquenaga and Fujii,
1991). Our model is also of interest from a theoretical perspective since, for a wide range
of parameter values, it exhibits checkerboard pattern oscillations as well as chaotic cycles.
Indeed, the model gives a simple illustrative example of how simple reproductive compe-
tition can give rise to complex community level dynamics (Johnson and Boerlijst, 2002).

In the model, individuals ‘live’ on ann × n lattice of resource sites, which will
henceforth be referred to as a ‘world’. The world has cyclic boundary conditions, so that
individuals leaving the ‘top’ or ‘right-side’ of the world reappear on the ‘bottom’ or ‘left-
side’ respectively and vice versa. Mathematically this means that we identify two sites
(i, j) and(i ′, j ′) if bothi − i ′ and j − j ′ are multiples ofn. We letCt

i j denote the number
of individuals at site(i, j) at time t . Individuals reproduce and disperse in two discrete
phases (seeFig. 1).

The reproduction phase involves local competition for a resource site. To each site we
apply an interaction functionφ : Z �→ Z. The interaction function acts on the site content
Ct

i j to give a new site population,φ(Ct
i j ). In the current model we define

φ(k) =
{

b if k = 1
0 otherwise

(1)

giving a classic scramble competition model (Nicholson, 1954): one individual at a site
producesb offspring, but if there is more than one individual at a site then all individuals
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Fig. 1. The spatially explicit individual-based model. Each box represents a site, and individuals are represented
by black circles. Shown are the reproductive phase where sites with exactly one individual produceb = 4
offspring followed by dispersal where individuals disperse in a ranges = 1 and then once more reproduction. If
two or more individuals share the same site they fail to reproduce due to interference.

fail to reproduce due to interference. Although we consider only Eq. (1) here, the
interaction can easily be extended to incorporate other forms of competition, interactions
between more than one species and stochasticity in the number of offspring produced
(Johansson and Sumpter, 2003).

After reproduction, each of theφ(Ct
i j ) individuals disperse. In this dispersal phase

individuals choose a site uniformly at random from a local neighbourhood of(2s + 1) ×
(2s + 1) sites, wheres is the maximum distance an individual can disperse. Throughout
this paper we will assume that(2s + 1) ≤ n so that there can be no multiple covering of
the same site by dispersal. We now make this concept precise. Recall that we identify two
sites(i, j) and(i ′, j ′) if bothi − i ′ and j − j ′ are multiples ofn. Define the neighbourhood
N(i, j, s) as the set of sites for which there exists a representation(i ′, j ′) ∈ Z

2 suchthat
|i − i ′| ≤ s and | j − j ′| ≤ s. The local populationMt

i j is defined as the number of
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individuals in the local neighbourhood to site(i, j) after reproduction, i.e.,

Mt
i j =

∑
(i ′, j ′)∈N(i, j,s)

φ(Ct
i ′ j ′).

The dispersal gives rise to a new site count{Ct+1
i j } with

P(Ct+1
i j = k | Mt

i j = m) =
(m

k

) 1

(2s + 1)2k

(
1 − 1

(2s + 1)2

)m−k

. (2)

In addition to the local population, we define the total populationMt

Mt =
∑

1≤i, j≤n

φ(Ct
i j ).

In most cases it is more convenient to work with densities instead of absolute population
numbers. Thus we defineXt = Mt/n2.

2.2. The normal approximation

When the dispersal area equals the size of the world, i.e., whenn = 2s + 1, the individ-
uals disperse uniformly over all sites. This specific well-mixed case can be described by a
mean-field approximation, which we now derive. Using thatMt

i j = Mt we get

E[Mt+1 | Mt = m] =
∑

1≤i, j≤n

m∑
k=0

φ(k)P(Ct
i j = k | Mt = m)

=
∑

1≤i, j≤n

m∑
k=0

φ(k)
(m

k

)( 1

n2

)k (
1 − 1

n2

)m−k

.

Letting n → ∞ while keeping the densityx = m/n2 constant gives

Φ(x) := E[Xt+1 | Xt = x] = exp(−x)

∞∑
k=0

φ(k)
xk

k! .

Furthermore,Johansson and Sumpter (2003)have shown that whenXt = x , n = 2s + 1
andn → ∞ the random variable

1

n

[ ∑
1≤i, j≤n

φ(Ct
i j ) − n2Φ(x)

]

converges in distribution to a normal distribution with mean 0 and variance

v(x) = Var[φ(Ux)] − xΦ′(x)2

whereUx is a Poisson distributed random variable with expectationx . This means that
whenn is large the population densityXt+1 is well approximated by thestochastic normal
approximation

xt+1 = Φ(xt ) +
√

v(xt )

n
εt (3)

whereεt ∼ N(0, 1).
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When applied to the specific interaction function in Eq. (1) we have that

Φ(x) = bx exp(−x) (4)

and

v(x) = b2x exp(−x)(1 − e−x) + b2x2 exp(−2x)(1− x). (5)

Eq. (4) is the well-known Ricker map (Ricker, 1954; May, 1976), and rigorous basic
dynamical facts for the Ricker map can be found inThunberg (2001). The Ricker map
has the fixed pointsx∗

1 = 0 andx∗
2 = ln b. As theparameterb increases, the map goes

through a series of period doubling bifurcations with the first occurring whenb = e2 [for
this valueΦ′(x∗

2) = −1]. Eventually, at approximatelyb = 15, an accumulation point is
reached and chaos ensues. Regions with periodic dynamics occur for higher values ofb,
but in our experience the addition of a stochasticterm often causes complicated dynamics
even for these values.

Although Eq. (3) is obtained asn → ∞, it does in practice provide a good
approximation when the scramble interaction function Eq. (1) is used, even for smalln.
We expect this to hold for many other interaction functions as well.

2.3. The coupled map lattice approximation

When the dispersalarea does not cover the entire world, the spatial structure becomes
important and Eq. (3) fails to provide a good approximation of the population dynamics.
However, if we consider a subsection of the world comparable in size to the dispersal
range, it is reasonable to assume that locally the individuals are approximately well-mixed
after accounting for the fact that individuals will enter and leave through the boundary.
This is the intuitive idea that we build upon. Assume that the world can be divided up
into patches of equal sizes × s, wheres is as before the maximal dispersal range of an
individual. The reason for this choice of patch size is that it is the largest size that preserves
the maximum propagation speed of individuals in the system. In these patches we assume
the individuals to be well-mixed so that the stochastic normal approximation applies. The
patches are then coupled with diffusion, corresponding to the dispersal of individuals that
takes place in the spatially explicit individual-based model. As can be seen fromFig. 2,
after dispersing from a given patch, there are nine possible patches where the individual
may subsequently be found. This is the basis for the coupled map approximation, which
we now put in mathematical terms.

Assuming thats dividesn we index thel = n2/s2 patches in thelattice. Let Xt =
(Xt

1, . . . , Xt
l ), whereXt

i is interpreted as the density of individuals at patchi . The coupled
map lattice (CML) approximation is then written as

Xt+1 = D(R(Xt , εt ), γ t ) (6)

where εt and γ t are vectors of independent random variables with standard normal
distribution of lengthl and 9l respectively. The functionsR and D correspond to
reproduction and diffusion respectively. We now define these functions.
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Fig. 2. The grey area shows the sites reachable by dispersal from site(i, j) whens = 4. Since dispersal is uniform
the fraction of dark grey to light grey sites in the figure is the probability that an individual at site(i, j) disperse
to patch SW. Fors = 4 the probability that an individual placed at random in patchC disperse to patch SW is,
with an accuracy of two decimals,dSWC = 0.08. The corresponding values for dispersal from patchC to C and
W respectively aredWC = 0.12 anddCC = 0.20. In the general case, the probabilities or diffusion coefficients
are given by Eqs. (9)–(11).

2.3.1. Reproduction
To describe the reproductive phase we assume that Eq. (3) provides a good

approximation to the actual reproductive outcome at each patch. This would be the case
if the individuals at each patch are uniformlydistributed. We then define the function
R : R

l × R
l �→ R

l component-wise as:

Ri (x, ε) =
(
Φ(xi ) +

√
v(xi )

s
εi

)+
(7)

where(xi )
+ is the maximum ofxi and 0, whileΦ(xi ) andv(xi ) are defined in Eqs. (4) and

(5) respectively.

2.3.2. Diffusion
To complete the formulation we need to define the function representing the diffusion

due to dispersal. Assume that each patchi containsmi individuals, and that after dispersal
thenumber of individuals at patchi is the random variableMi . If we let κ(i) denote the
nine patches in the Moore-neighbourhood ofi , depicted inFig. 2with the central patchC
representing patchi , wecan write

Mi =
∑

j∈κ(i)

Dij

whereDij is the number of individuals dispersing to patchi from patch j . We assign to
each individualk in patch j a Bernoulli variable Ik which is 1 if the individual disperses
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from patch j to patchi and 0 otherwise. Then, assuming a total ofm j individuals in
patch j ,

Dij =
m j∑

k=1

Ik .

Definedi j as the probability that an individual placed at random in patchj disperse to patch
i . If the individuals at patchj are uniformly distributed, thenDij is distributed binomially
as Bin(m j di j , m j di j (1 − di j )). Thiscan be approximated with a normal distribution, i.e.,

Dij ≈ m j di j +
√

m j di j (1 − di j )γi j

whereγi j ∼ N(0, 1). To ensure that we will not have negative populations we take the
maximum of 0 andDij . Then

Mi ≈
∑

j∈κ(i)

[
di j m j +

√
m j di j (1 − di j )γi j

]+
.

The CML approximation in Eq. (6) is expressed in terms of population densities rather
than total population numbers. We thus divide withs2 and writeXi = Mi /s2, xi = mi/s2

to give a component-wise definition ofD : R
l × R

9l �→ R
l :

Di (x, γ ) =
∑

j∈κ(i)

[
di j x j +

√
x j

s2
di j (1 − di j )γ

i j
]+

. (8)

Note that diffusion, as defined here, is not conservative. We also implemented the coupled
map lattice approximation with conservative diffusion, but apart from longer simulation
times, there were no noticeable difference between the two. Possibly, the introduction and
removal of individuals through non-conservative diffusion is of minor importance when
compared to births and deaths that occur at each patch.

To implement the diffusion step we need explicit values for the diffusion coefficients.
Recall thatdi j is the probability that an individual placed at random in patchi disperse to
patch j . This isactually a simplification as individuals are really distributed in ‘packets’
of b individuals each. We first determine the value of the diffusion coefficientdSW C for
uniform dispersal and diffusion from a patchC to the southwest neighbouring patchSW
(seeFig. 2). Assume that there arem uniformly distributed individuals in patchC about
to disperse, and recall that each individual disperses to any of(2s + 1)2 sites in a square
around the individual with uniform probability. Assign, as before, a Bernoulli variableIk

to each individualk in the central patch, which is 1 if the individual disperses to any of
the sites in the southwest patchSW and 0 otherwise, i.e.,Ik is 1 with probabilitydSW C.
If we index the sites inC by (i, j), 1 ≤ i , j ≤ s thenfrom the assumptions just made, it
follows that

dSW C =
∑

1≤i, j≤s

1

s2
× P(k disperse to patch SW| k at (i, j))

=
∑

1≤i, j≤s

1

s2
× # reachable sites in patch SW

(2s + 1)2
.
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Thus, in our example inFig. 2we need to find the overlap (marked in dark grey) between
the neighbourhood of size(2s + 1)2 around(i, j) and the southwest patch SW. The
southwest patch SW covers sites(i ′, j ′) where−s + 1 ≤ i ′, j ′ ≤ 0. Using these facts,
we get

dSW C =
∑

1≤i, j≤s

1

s2

(s + 1 − i)(s + 1 − j)

(2s + 1)2

= 1

s2(2s + 1)

s∑
i=1

(s + 1 − i)

(
s∑

j=1

(s + 1 − j)

)
.

By reindexing, the sum in large brackets is just
∑s

j=1 j = 1
2s(s + 1). Hence,

dSW C = (s + 1)2

4(2s + 1)2
. (9)

A similar argument shows that the coefficient for diffusion from C to C is

dCC = s2

(2s + 1)2
(10)

and finally from C to W,

dW C = s(s + 1)

2(2s + 1)2 . (11)

As s → ∞, these tend to 1/16, 1/4 and 1/8 respectively.
The preceding derivation of diffusion is based on dispersal in a square neighbourhood.

In practice, the coupled map lattice approximation will work for most local dispersal
functions and for other topologies, provided the patch size is small enough that individuals
can be assumed locally well-mixed. For example, if we used geometric dispersal, where
individuals perform an uncorrelated random walk, we would have to consider diffusion
to all other patches. However, the probability of dispersal decreases exponentially with
distance and we could possibly consider dispersal only to patches where the diffusion
coefficient exceeds some threshold value. Thus, while other forms of dispersal may make
an actual implementation more complex, the coupled map lattice approximation could still
be applied.

2.3.3. The deterministic coupled map lattice approximation
We define the deterministic version of the coupled map lattice approximation as

Xt+1 = D(R(Xt )) (12)

where D(x) = D(x, 0) and R(x) = R(x, 0), where 0 is the zero vector of suitable
dimension. This is a standard (forward) diffusive coupled map lattice model.

2.4. Implementation

The spatially explicit individual-based model was implemented using the software
package Swarm, while the coupled map approximation was implemented in Matlab. The
diffusion coefficients were calculated using Eqs. (9)–(11).
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2.5. Computational complexity

Although theoretically both the complexity of the individual based model and the
coupled map lattice approximation is O(n2), aseach individual or patchrequires a constant
number of operations, the approximation was inpractice much faster overall. For example,
although the coupled map lattice approximation was implemented in Matlab, 80% of the
computation time required to produceFig. 5 was spent calculating data for the individual
based model.

3. Results

Fig. 3 shows how the distribution of individuals evolves over time for three time steps
of the individual-based model, for various parameter values. When the dispersal is very
local (s = 3) and the number of offspring is relatively low [Fig. 3(a)], we see high spatial
variation in the population density within generations. However, between generations the
spatially averaged population density is almost stable [Fig. 4(a)]. When dispersal takes
place over a wider range, the spatial population density is relatively homogeneous within
each generation [Fig. 3(b)], but period 2 oscillations occur in the average population
density over consecutive generations [Fig. 4(b)]. When the number of offspring per
individual is large, then checkerboard patterns appear, where highly populated areas on
one time step become sparsely populated on the next [Fig. 3(c)]. In this case, the average
population density can exhibit chaotic oscillations (not shown, but see below).

Fig. 4 compares the time series from three different individual-based simulations
with those generated by the CML approximation [Eq. (6)] and the deterministic CML
[Eq. (12)]. For these parameter values, the CML approximation appears to recreate the
population dynamics of the individual-based model. The deterministic CML, however,
always converges to the mean approximation Eq. (4), as all of the coupled maps become
entrained. Indeed, since diffusion reduces the differences between neighbouring sites, one
can show that the synchronised state is a stable attractor of Eq. (12). The stochastic terms
in Eq. (6) are thus essential in replicating the dynamics of the individual-based model.

The stochastic coupled map lattice accurately approximates thelong-term population
dynamics of the individual based model for a wide range of parameter values.Fig. 5
shows ‘bifurcation plots’, where the long-term distribution of populations values for both
the spatially explicit individual-based model and its coupled map lattice approximation
are plotted against the number of offspringb, for various values ofs. For these values
of s and b, Fig. 5 also shows the difference between the mean of the time-series from
the individual-based model andcoupled map lattice approximation and the difference in
variance. Especially fors = 2 ands = 3, there is a small difference in mean, which
seems to depend linearly onb. This is likely an artefact due to the use of the normal
approximation, Eq. (3), for very few sites (four and nine, respectively). The variance is
also similar, but there is a clear deviation aroundb = 10 when periodic dynamics occur.
However, with the exception ofs = 3, the approximation is reasonably accurate for values
of b in the region where the mean approximation,Φ(x), hasits first series of period
doubling bifurcations, i.e., for approximatelyb < 15. The anomaly ats = 3 is caused
by it being close to a ‘bifurcation point’, where the global population goes from being
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Fig. 3. Three consecutive snapshots of the individual-based simulationswith parameters (a)b = 10 ands = 3,
(b) b = 10 ands = 5 and (c)b = 20 ands = 5.

stable to exhibiting period 2 oscillations. Indeed, if we fixb = 10 and changes, as in
Fig. 6, we seethats = 3 is close to the point at which periodic oscillations appear.
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Fig. 4. Time-series sampled after 5000 generationsfrom the individual-based model (IBM, left column),
the coupled map lattice approximation (CML, middle column) and the deterministic coupled map lattice
approximation (Deterministic CML, right column) with parametersn = 100 and (a)b = 10 ands = 3, (b)
b = 10 ands = 5 and (c)b = 10 ands = n/2 − 1, i.e., uniform dispersal.

For b > e2(≈7.39), if dispersal is global, i.e.,s = n/2 − 1, then the population
density exhibits oscillations between generations.Fig. 6 shows a shift from stable to
periodic population dynamics as the dispersal range increases, both in the individual-based
simulation and in the coupled map lattice approximation. For local dispersal the population
density can be stable across generations, while ass increases the population tends to behave
in a similar manner to thecase where dispersal is global [e.g., compareFig. 4(b) and (c)].
Local dispersal can thus be said to stabilise population dynamics.

Approximately whenb > 15 and the dispersal is global the population often has chaotic
dynamics.Fig. 3(c) shows a typical sequence of spatial distributions for local dispersal:
checkerboard patterns appear, where local areas alternate between containing very high and
very low population densities. Withb in this region, the CML fails to provide quantitative
predictions of the behaviour of the individual-based model (Fig. 7). However, both the
CML and the individual-based model exhibit either stable or periodic dynamics, whereas
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Fig. 5. ‘Bifurcation plots’ comparing the individual-based model (top row) and its coupled map lattice
approximation (middle row) for five different values of the dispersal ranges. For eachs, the parametern is
set to the integer multiple ofs closest to 100, i.e.,n = 100, 99, 100, 100, 100 for the five plots respectively.
To produce the bifurcation plots we simulated 5000 generations for eachb and plotted the population density of
the last 100 generations. The bottom row of plots were produced by taking the absolute value of the difference
between the mean of the last 1000 iterations of the time-series from the individual based model and the mean
of the last 1000 iterations of the time-series from the coupled map lattice approximation (crosses) as well as the
corresponding absolute value of the difference in variance (circles and dashed line).

the normal-approximation and global dispersalmodels predict chaotic dynamics. Again,
local dispersal plays a stabilising role in thepopulation dynamics, this time causing chaotic
oscillations to become stable or periodic.

4. Analysis

The general pattern revealed by the simulations of both the coupled map lattice and
the individual-based model is that shorter dispersal ranges correspond to greater spatial
variation but less temporal variation in the population dynamics. There is furthermore a
rapid shift from stable to periodic population dynamics as the dispersal range increases.
To understand the effect of local dispersal on population dynamics we consider a simple
system ofl globally coupled patches where reproduction is followed by diffusion and
added stochasticity. LetXt = (Xt

1, . . . , Xt
l ). Given εt = (εt

1, . . . , ε
t
l ), a vector of

independent and N(0, 1)-distributed random variables, the system can be written as
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Fig. 6. ‘Bifurcation plots’ comparing the individual-based model (top row) and its coupled map lattice
approximation (bottom row) forb = 8 offspring(left) andb = 10 offspring (right). For eachs we simulated
5000 generations and plotted the population density of the last 100 generations.

Xt+1 = D̂(R̂(Xt ), εt ) (13)

whereD̂ : R
l × R

l �→ R
l and R̂ : R

l �→ R
l are defined below. Eq. (13) is a simplified

analogue of Eq. (6), designed to have similar properties.

4.1. Reproduction

To facilitate analysis, the reproductive phase is given by a step function. DefineR̂ :
R

l �→ R
l component-wise by:

R̂i (x) =
{

xa if xi ≤ xc

xb otherwise
(14)

wherexi is componenti of x ∈ R
l . Each of the patches can have two different population

levels, either high,xa, or low,xb, i.e., xa > xb. Assuming thatxc ∈ (xa, xb) thedynamical
systemxt+1 = R̂(xt) will have period 2 population dynamics, such that all patches
oscillate betweenxa andxb, although not necessarily in the same phase. Such oscillations
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Fig. 7. Distribution plots (left) and delay plots (right) for the individual-based model (columns 1 and 3) and its
coupled map lattice approximation (columns 2 and 4) forb = 20 and dispersal range froms = 3 to s = 7. With
b = 20 the mean approximation, Eq. (4), has chaotic dynamics.

are typically seen for some parameter values in both the individual-based model and the
coupled map lattice whenb > e2.

4.2. Diffusion

The patches are globally coupled, and we thus defineD̂ component-wise as

D̂i (x, ε) = (1 − d)xi + d

l

l∑
j=1

x j + σ

s3/2εi . (15)

The final term can be considered as representing an aggregate of stochasticity from
reproduction and diffusion, giving noise that scales like the noise in the coupled map lattice
approximation [see Eqs. (7) and (8)].

4.3. Population dynamics

To study the population dynamics of Eq. (13) we track the expected fraction of sites that
equalxa after the reproductive stage. Writeρt

a for this fraction. The expected population
density givenρt

a is ρt
a xa + (1 − ρt

a)xb.
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Fig. 8. ‘Bifurcation plot’ showing the effect of noise onperiodic population dynamics in a simple and analytically
tractable stochastic coupled map lattice, Eq. (13). The noise added at each site is proportional tos−3/2 [Eq. (15)],
thus scaling as in the coupled map lattice approximation. At each site the reproduction is given by Eq. (14) with
xa = 3.6706,xb = 0.9346 andxc = 2.4. These values are chosen for the dynamics to resemble Eq. (4), the
Ricker map, withb = 10. Specifically,xa andxb are chosen to give the same periodic orbit, whilexc is on the
boundary of the stable set to the periodic fixed points of the Ricker map withb = 10.

We now determine the expected value ofρt+1
a conditioned onρt

a. If a sitei equalsxa at
time t , then stochastic diffusion changes the value to

(1 − d)xa + d(ρt
a xa + (1 − ρt

a)xb) + σ

s3/2
εt

i .

In the reproductive step the site will change toxb if andonly if

εt
i >

s3/2

σ

(
xc − (

(1 − d)xa + d(ρt
axa + (1 − ρt

a)xb)
))

.

Define

rab(ρ, s) = P

(
εt

i >
s3/2

σ

[
xc − ((1 − d)xa + d(ρt

axa + (1 − ρt
a)xb))

])
.

It should be noted thatrab can be interpreted as the probability that a site in statexa will
change toxb in one iteration. Asl → ∞ we have

ρt+1
a = ρt

a + rba(ρt
a, s)(1 − ρt

a) − rab(ρ
t
a, s)ρt

a . (16)

Writing ρt+1
a = g(ρt

a) we are interested in the fixedpoints for g2(ρ) = g(g(ρ)),
corresponding to period 2 fixed points forg.

Fig. 8 shows the expected population density for the fixed points withd = 0.5. When
there is sufficient stochasticity there is only one fixed point, corresponding to a complete
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desynchronisation of the system. As the variance decreases a bifurcation occurs and two
new stable fixed points appear. Ass increases, these move toxa andxb respectively.

This noise induced bifurcation is very possibly what causes the shift in population
dynamics of the CML approximation, Eq. (6), as the dispersal range decreases. This
possibility is supported by the qualitative similarity betweenFigs. 6and 8. It is worth
noting that Eq. (13) has global rather than local diffusion. It is thus local stochasticity,
ratherthan spatial structure per se, that leads to the bifurcation inFigs. 6and8. In the
individual-based model, local stochasticity and spatial structure are inseparable. The CML
approximation reveals that it is the local stochasticity, in particular, that stabilises the
population dynamics.

5. Discussion

Coupled map lattices are not new in ecology. They have frequently been used to
model population dynamics (Hassell et al., 1991; Bascompte and Sole, 1994; Janosi
and Scheuring, 1997; Keeling et al., 1997; Rees and Paynter, 1997; Yokozawaet al.,
1999; Bjørnstad and Bascompte, 2001), sometimes as an alternative to spatially explicit
individual-based models. The approximation proposed in this paper provides a direct link
between certain spatially explicit individual-based models and stochastic coupled map
lattices. Relating the two approaches is important since it effectively disentangles the
deterministic and stochastic element of local interaction and dispersal, thus exposing the
role of noise in producing spatial population dynamics.

In this paper we have concentrated on the specific case of scramble competition.
However, a similar approach should hold for many other types of interactions.
Specifically,Johansson and Sumpter (2003)considered contest competition, cooperation
and predator–prey systems under uniform dispersal. These examples could easily be
extended into the spatial case, and analysed through the technique presented here.

Through a series of simplifications we havereduced the spatial scramble competition
model to a simple, analytically tractable counterpart, Eq. (16), which still retains
the important qualitative properties (Figs. 6 and 8). This process has highlighted the
importance of including a stochastic term incoupled map lattice approximations. In single
species models without a stochastic term, diffusion synchronises all maps on the lattice and
the approximation fails. With this stochasticterm, not only is the approximation accurate,
but we are alsoable to explain how the individual-based model behaves as we change the
dispersal range. Indeed, the increased local demographic stochasticity when the dispersal
range is short appears to be of particular importance in stabilising the population dynamics,
over and above thatof space itself.

Demographic stochasticity plays a central role in explaining why spatial structure tends
to have a stabilising effect on the population dynamics.Jaggi and Joshi (2001)illustrated
the stabilisation phenomena—used to explain why chaos is so infrequent in ecological
time series (Hassell et al., 1976; Turchin and Taylor, 1992)—by incorporating random
spatial variation into simple difference equations. They found that spatial variation could
indeed have a stabilising role, but provided no convincing explanation of how spatial
variation is maintained. The coupled map lattice approximation provides a simple yet
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compelling explanation: stabilisation is a result of increased noise from local dispersal
and competition. Furthermore, this stochasticityis self-maintaining through the generation
of spatially unsynchronised patches.

The route is now clear for other spatially explicit individual-based models and stochastic
coupled map lattice models to be linked through the approximation proposed here. The
coupled map lattices applied thus far in ecologyhave, in general, been deterministic models
of predator–prey interactions. Since even small perturbations can have profound effects on
the dynamics of a coupled map lattice (Losson and Mackey, 1995), these deterministic
models are open to the criticism that the patterns they produce, usually spiral waves, are
simply an artefact of determinism. To address such criticism,Wilson et al. (1993)and
Bascompte et al. (1997)have shown that individual-based models can produce the same
types of spatial patterning as their deterministic counterparts. However, the form of these
patterns is strongly dependent on the implementation of individual stochasticity and it is
unlikely that deterministic coupled map lattices can be derived as a biologically realistic
limit of the individual-based simulation (Wilson et al., 1993).

The coupled map lattice approximation can beused to solve the ‘inverse problem’
for deterministic coupled map lattices. Given a deterministic coupled map lattice, the
interaction function for the corresponding individual-based model can be determined and
the individual-based model constructed. The stochastic terms arising from the individual-
based model can then be calculated. The resultant stochastic coupled map lattice can
be analysed to determine whether large-scale patterns can be maintained under the
assumptions necessary for a biologically realistic individual-based model. For the single
species model described here it was stochasticity that produced the spatial checkerboard
pattern, while for the predator–prey model described byHassell et al. (1991)the question
is whether or not stochasticity will destroy or significantly alter spiral wave patterns.
Studying such systems has direct relevance to ecology, where the question as to how
to translate the dynamics of populations over different scales has so far resisted a
simple solution. Hopefully, the coupled map lattice approximation will strengthen our
mathematical armoury as we mount further assaults on this problem.
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