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Abstract

Spatially explicit individual-based models are wiglusel in ecology btithey areoften dfficult to
treat analytically. Despite their intractability they often exhibit clear temporal and spatial patterning.
We demonstrate how a spatially explicit individual-based model of scramble competition with local
dispersal can be approximatey &stochastic coupled map latticEhe gpproximation disentangles
the deterministicand stochastic element of local interaction and dispersal. We are thus able to
understand the individual-based model through a simplified set of equations. In particular, we
demonstrate that demogpaic noise leads to increased stabilitythe dynamics of locally dispersing
single-species popations. The coupled map lattice approxiioa has general application to a range
of spatially explicit individual-based models. It provides a new alternative to current approximation
techniques, such as the method of moments and reaction—diffusion approximation, that captures both
stochastic effects and large-scale patterning arising in individual-based models.
© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Spatially explicit individual-based models are commonly used to understand and study
the behaviour of ecological systeni3gAngelis and Gross, 199€zaran, 1998Diekmann
et al., 2000. Applications of these models have been both phenomenological, where
general properties of ecological systems are elucidated through the study of a model

* Corresponding author.
E-mail address: ake.brannstrom@math.umu.se (A. Brannstrém).

0092-8240/$30 © 2004 Society for Mathatital Biology. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.bulm.2004.09.006


http://www.elsevier.com/locate/ybulm

664 A. Brannstrém, D.J.T. Sumpter / Bulletin of Mathematical Biology 67 (2005) 663-682

(Ermentrout and Edelstein-Keshet, 19%bwak and May, 1992 Boerlijst et al., 1993

Bolker and Grenfell, 1995Pacala and Tilman, 19968wasa et al., 1998Keeling et al.,

2000, and quantitative, where specific predictions about a system can be made and direct
comparisons drawn to an experimental or field-based sydteralifig et al., 2001Kerr

et al., 2002. The strength of individual-based modelling is that direct observations of how
individuals act and interact can be specified arduded in a model, thus forcing precise
thinking and developing intuition abohbw the studied system functions.

It is often difficult to treat spatially explicit individual-based models analytically. An
intriguing question therefore is whether it is possible to approximate their qualitative
behaviour in a small number of analytically tractable equations. To address this problem,
Rand and Wilson (1995used delay embedding techniques to show that the dynamics
of a spatial resource-predator—prey model could be captured in a set of four differential
equations. In a similar spiriPasaual and Levin (1999Yescribe a spatial predator—prey
model and show that when sampling of the population is made at the appropriate spatial
scale the dynamics are well approximated by two differential equations. Such observations
are encouraging since they indicate that, on some spatial scale at least, the population
dynamics of spatial individual-based models bamapproximately equivalent to those of a
smallnumber of differential equations.

Broadly speaking, there are two well established approximation techniques for
the reduction of spatially explic individual-based models: theeaction—diffusion
approximation and themethod of moments. The reaction—diffusion approximation deals
with models where individuals follow a random walk and are so abundant that their
distribution can be regarded as continuous in spdtigi@y, 1989 Chater 9). Diffusion
approximations break down when the stochastic behaviour of a few individuals becomes
important. For example, if reproduction takes place at discrete times while dispersal is a
continuous diffusion process then populatipnesad can in reality be determined by small
numbers of individuals jumping ahead of a travelling wave rather than by an assumed
population wave frontNlollison, 1991 van Baalen, 200

The method of momentsBplker and Pacala, 1997accounts for the local spatial
correlations which can arise from discrete events. The dynamics of the spatial distribution
are approximated by studying how the mean, variance and (possibly) higher moments
of this distribution evolve in time. A first-order moment approximation assumes that the
population is well-mixed and stochastic dtuations can be ignored, resulting in a non-
spatial system of ordinary differential eqgti@ns. A second-order approximation includes
evolution equations for the variance as wellthe mean, and is often sufficient to capture
much of the spatial correlation in the system, both quantitatively and qualitatively. The
technique ofpair approximation (Sao and Iwasa, 2000van Baalen, 200Dis essentially
the method of moments applied to probabitiscellular automata. Second-order pair
approximation involves estimating differgal equatons for the rate of change of pairs
of neighbouring cells in a cellular automata, thus capturing how local correlations between
neighbouring cells evolve.

Second-order moment methods typically fail to capture any large-scale emergent
patterns, such as spiral waves or checkerbpatterns, that are often seen to arise out of
spatially explicit individual-based models [séhnson and Boerlijst (2002)r examples
of such large-scale patterns]. By their nature, such patterns give rise to large higher-order
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moments, corresponding to skew or bimodalitythe spatial distribution. Accounting
for third-order moments becomes highly cumbersome and produces approximations that
are difficult to understand and not guaranteed to give any useful information about the
spatial distributionBolker et al., 200D While some of these large-scale patterns might be
captured by a reaction—diffusion approximation, the problems associated with stochastic
actions of small numbers of individuals remains. There thus exists a large class of spatial
individual-based models for which we currently have no means of approximating and
establishing analytical understanding.

Here we develop a third alternative appimation technique aimed at establishing
at least some analytical understanding of spatially explicit individual-based models with
large-scale emergent patterns. We call this approaciuged map lattice approximation.
To illustrate its application we use an example of a model that exhibits checkerboard
paterns and chaotic oscillations. We begin by describing the individual-based model, then
its coupled map approximation and ultimgtebmpare the model and the approximation
with an aim to understanding how local déspal stabilises the population dynamics.

2. Model and approximation
2.1. The spatially explicit individual-based model

The model we study here is a local-dispersal extension of one propos8drbgter
and Broomhead (200Tdr the parasitism of honey bee brood cells\&yroa mites. Al-
though our model is no longer appropriate Yarroa mite reproduction—since mites dis-
perse globally rather than locally between reproductive phases—it would be realistic for
modelling the reproduction of other species ditimg scramble compgion over discrete
resource sites, such as the bean bru€atlosobruchus phaseoli (Toquenaga and Fuijii,
1991). Our model is also of interest from a thretical perspective since, for a wide range
of paameter values, it exhibits checkerboard pattern oscillations as well as chaotic cycles.
Indeed, the model gives a simple illustratexample of how simple reproductive compe-
tition can give rise to complexaemmunity level dynamicsiphnson and Boerlijst, 2002

In the model, individuals ‘live’ on am x n lattice of resource sites, which will
henceforth be referred to as a ‘world’. The world has cyclic boundary conditions, so that
individuals leaving the ‘top’ or ‘right-side’ of the world reappear on the ‘bottom’ or ‘left-
side’ repectively and vice versa. Mathematigathis means that we identify two sites
@i, j)and(’, j") if bothi —i”andj — j’ are multiples ofh. We IetCit- denote the number
of individuals at site(i, j) at timet. Individuals reproduce and disperse in two discrete
phasesgeeFig. 1).

The reproduction phase involves local caetiion for a resource site. To each site we
apply an interaction functio# : Z > Z. The irteraction function acts on the site content

Citj to give a new site populatiozb,(Citj ). In the curent model we define
b if k=1
¢k) = {O otherwise (1)

giving a dassic scramble competition mod@i¢holson, 195% one individual at a site
produced offspring, but if there is more than one individual at a site then all individuals
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Fig. 1. The spatially explicit individual-based modeadh box represents a site, and individuals are represented
by black circles. Shown are the reproductive ghahere sites with exactly one individual prodube= 4
offspring followed by dispersal where individuals disperse in a rangel and then once more reproduction. If
two or more individuals share the same site they fail to reproduce due to interference.

fail to reproduce due to interference. Although we consider only B}.hér, the
interaction can easily be extended to incorporate other forms of competition, interactions
between more than one species and stdatigsin the number 6 offspring produced
(Johansson and Sumpter, 2003

After reproduction, each of th$(Citj) individuals disperse. In this dispersal phase
individuals choose a site uniformly at random from a local neighbourho@@sof 1) x
(2s + 1) sites, wheres is the maximum distance an individual can disperse. Throughout
this paper we will assume thé&s + 1) < n so that there can be no multiple covering of
the same site by dispersal. We now make tloisaept precise. Recall that we identify two
sites(i, j) and(i’, j’) if bothi —i’ andj — j’ are multiples oh. Define the neighbourhood
N(, j, s) as the set of sites for which there exists a representétipj) e Z? suchthat
li —i’l < sand|j—j| < s. The local populatiori\/litj is defined as th number of
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individuals in the local neighbourhood to siie j) after reproduction, i.e.,

(i”,j")eNG.j,s)
The dispersal gives rise to a new site coL(Eﬁ“} with
m 1 1 \™k
PC™t =k M| =m) = 1- : 2
( | M ) (k) (2s + 1 (254 1)2 2)
In addition to the local population, we define the total populattin

> e

1<i,j<n

In most cases it is more convenient to workwdensities instead of absolute population
numbers. Thus we definé! = Mt/n2.

2.2. The normal approximation

When the dispersal area equals the size of the world, i.e., whe@s + 1, the individ-
uals disperse uniformly ovetlaites. This specific well-mixed case can be described by a
mean-field approximation, which we now derive. Using tmé]-t = Mt we get

m
EMTtL | Mt =m] = Z qu(k)P(Citj =k|M!'=m)

- 25O (5

Lettingn — oo while keeping the density = m/n? constant gives
00 Xk
P(x) == E[X!T! | X' = x] = exp(—x) qu(k)—
k=0 k!

Furthemore,Johansson and Sumpter (2008)ve shown that wheX! = x,n = 2s+ 1
andn — oo the random variable

[ > el - n2¢(x)]
1<i,j<n
converges in distribution to a normal distribution with mean 0 and variance

v(x) = Varlg (Ux)] — x &' (x)?
whereUy is a Poisson distributed random variable with expectatiorThis means that
whenn is large the population densitX!*?1 is well gpproximated by thetochastic normal
approximation

v(X)t

= o(x") + —— ()

wheree! ~ N(0, 1).
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When applied to the specific interaction function in Ef.We have that
®(x) = bx exp(—x) (4)
and
v(X) = b?x exp(—x)(1 — € %) + b?x2 exp(—2X) (1 — X). (5)

Eq. @) is the wdl-known Ricker map Ricker, 1954 May, 197§, and rigorous basic
dynamical facts for the Ricker map can be foundlimunberg (2001)The Ricler map
has the fixed pointg] = 0 andx3 = Inb. As theparameteb increases, the map goes
through a series of period doubling bifurcations with the first occurring whene? [for
this valued’(x3) = —1]. Eventually, at approximately = 15, an accumulation point is
reached and chaos ensues. Regions witfoge dynamics occurdr higher values ob,
but in our experience the addition of a stochastien often causes complicated dynamics
even for thee values.

Although Eg. 8) is obtained asn — oo, it does in practice provide a good
approximation when the scramble interaction function Hj.i§ used, even for smati.
We expect this to hold for many other interaction functions as well.

2.3. The coupled map lattice approximation

When the dispersarea does not cover the entire world, the spatial structure becomes
important and Eq. 8) fails to provide a good approximation of the population dynamics.
However, if we consider a substion of the world comparable in size to the dispersal
range, it is reasonable to assume that locally the individuals are approximately well-mixed
after accounting for the fact that individuals will enter and leave through the boundary.
This is the intuitive idea that we build upon. Assume that the world can be divided up
into patches of equal sizex s, wheres is as before the maximal dispersal range of an
individual. The reason for this choice of patch size is that it is the largest size that preserves
the maximum popagation speed of individuals in the system. In these patches we assume
the individuals to be well-mixed so that the shastic normal approximation applies. The
patches are then coupled with diffusion, corresponding to the dispersal of individuals that
takes place in the spatially explicit individual-based model. As can be seenFigr2,
after dispersing from a given patch, there are nine possible patches where the individual
may subsequently be found. This is the basis for the coupled map approximation, which
we now put in mathematical terms.

Assuming thats dividesn we index thel = n?/s? patches in thdattice. Let X! =
(Xt ..., Xlt), whereXit is interpreted as the dahsof individuals at patch. The coupled
map lattice (CML) approximation is then written as

X = D(R(XY, €Y, Y (6)

where ¢! and y! are vectors of independent random variables with standard normal
distribution of lengthl and 9 respectively. The function® and D correspond to
reproduction and diffusion respectively. We now define these functions.
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Fig. 2. The grey area shows the sites reachable by dispersal fro¢h gitevhens = 4. Since dispersal is uniform
the fraction of dark grey to light grey sites in the figure is the probability that an individual ai sjtedisperse

to patch SW. Fos = 4 the probability that an individual placed at random in paiHispese to p&ch SW is,
with an accuracy of two decimaldgyc = 0.08. The corresponding values for dispersal from p&dbo C and

W respectively aredyc = 0.12 anddcc = 0.20. In the general case, the probabilities or diffusion coefficients
are given by Eqs.9)—(11).

2.3.1. Reproduction

To describe the reproductive phase we assume that By.piovides a good
approximation to the actual reproductive cane at each patch. This would be the case
if the individuals at each patch are uniformdijstributed. We then define the function
R:R x R' — R' component-wise as:

«/U(Xi)6.>+
|
S

Roxe) = (000 + @
where(xj)* is the maximum ok; and 0, while®(x;) andv(x;) are defined in Eqs4j and
(5) respectively.

2.3.2. Diffusion
To complee the formulation we need to define the function representing the diffusion
due to dispersal. Assume that each patchntainan; individuals, and that after dispersal
the number of individuals at patchis the random variabléVi;. If we let « (i) denote the
nine patches in the Moore-neighbourhood adepided inFig. 2with the central patcic
representing patch we can write
M = Z Dij
jex()
whereDjj is the nunber of individuals dispersing to patchifrom patchj. We assign to
each individuak in patchj a Bemnoulli variable I which is 1 if the indvidual disperses
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from patchj to patchi and O otherwise. Then, assuming a totalnef individuals in
patchj,

mj
Dij = Z lk.
k=1

Defined;j as the probability that an individual placed at random in paitdispese to patch
i. If the individuals at patcl are uniformly distributed, theB;; is distributed binomially
as Binm;dij, mjdij (1 — dij)). Thiscan be approximated with a normal distribution, i.e.,

Dij ~ mjdij + ,/mjdij (1 — dij)¥j

whereyij ~ N(O, 1). To ensure that we will not have negative populations we take the
maximum of 0 andD;j. Then

+
M; ~ Z [dijmj +,/mjdij(1— dij)y”'] .
jex()
The CML approximation in Eq.6) is expressed in terms of population densities rather
than total population numbers. We thus divide wfrand writeX; = M; /s, x; = m; /s?

to give a component-wise definition 6f : R! x RY i R!:

) Tt
Di(x,y) = Z |:dinj +,/§dij(1—dij)y”j| . (8)

jex(
Note that diffusion, as defined here, is not conservative. We also implemented the coupled
map lattice approximation with conservativdéfdision, but apart from longer simulation
times, there were no noticeable differencédmen the two. Possibly, the introduction and
removal of individuals through non-conservative diffusion is of minor importance when
compared to births and deaths that occur at each patch.

To implenent the diffusion step we need explicit values for the diffusion coefficients.
Recall thatd;j is the probability that an individual placed at random in patdispese to
patch j. This isactually a simplification as individuals are really distributed in ‘packets’
of b individuals each. We first determinegthalue of the diffusion coefficierdswc for
uniform dispersal and diffusion from a pat€hto the uthwest neighbouring patc®V
(seeFig. 2). Assume that there ara uniformly distributed individuals in patc@ about
to disperse, and recall that each individual disperses to a®sof 1) sites in a square
around the individual with unifion probability. Assign, as before, a Bernoulli varialbie
to each individuak in the central patch, which is 1 if the individual disperses to any of
the sites in the @uthwest patct8W and 0 otherwise, i.elk is 1 with probabilitydswc.

If we index the sites irC by (i, j), 1 < i, j < sthenfrom the assumptions just made, it
follows that

1
dswc = Z 2 X P(k dispese to patch SW k at(i, j))
1<i,j<s
Z 1 #reachable sites in patch SW
= — X .
2 (2s+ 1)2

1<i,j<s
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Thus, in our example ifrig. 2we need to find the overlap (marked in dark grey) between
the reighbourhood of siz&2s + 1)2 around (i, j) and the southwest patch SW. The
southwest patch SW covers sités, j’) where—s + 1 < i’, j’ < 0. Using these facts,
we get

1(s+1-i)(s+1—j)
dswe = D 2 (2s+ 1)2

1<i,j<s

1 S .
= 22s+ 1) ;(Hl_')(

By reindexing, the sum in large brackets is j[s:le j = %s(s + 1). Herce,

S
(s+1-— j)).
j=1

(s+1)?
d =—. 9
SWE = 425+ 1)2 ©)
A similar argument shows that the coefént for diffusion from C to C is
2
decc = ——— 10
©C T 25+ 1)2 (10)
and finally from C to W,
s(s+1)
d = ——0. 11
WC = 225+ 1)2 (11)

Ass — oo, these tad to 1/16, 1/4 and /8 respectively.

The preceding derivation of diffusion is based on dispersal in a square neighbourhood.
In practice, the coupled map lattice approximation will work for most local dispersal
functions and for other topologies, providétpatch size is small enough that individuals
can be assumed locally well-mixed. For example, if we used geometric dispersal, where
individuals perform an uncorrelated random walk, we would have to consider diffusion
to all other patches. However, the probiy of dispersal decreas exponetially with
distance and we could possibly consider dispersal only to patches where the diffusion
coefficient exceeds some threshold value. Thdsle other forms of dispersal may make
an actual implementation more compléxe ttoupled map lattice approximation could still
be applied.

2.3.3. The deterministic coupled map lattice approximation
We define the deterministic version of the coupled map lattice approximation as
X+ = D(R(XY) (12)
whereD(x) = D(x,0) and R(x) = R(x, 0), where 0 is lhe zero vector of suitable
dimension. This is a standard (forvddiffusive coupled map lattice model.
2.4. Implementation

The spatially explicit individual-based model was implemented using the software
package Swarm, while the coupled map approximation was implemented in Matlab. The
diffusion coefficients were calculated using E—11).
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2.5. Computational complexity

Although theoretically both the complexity of the individual based model and the
coupled map lattice approximation ig16%), aseach individual or patctequires a constant
number of operations, the approximation wapiiactice muchdster overall. For example,
although the coupled map lattice approximatieas implemented in Matlab, 80% of the
computation time required to produEgy. 5was spat calculating data for the individual
based model.

3. Results

Fig. 3shows how the distribution of individuals evolves over time for three time steps
of the individual-based model, for various parameter values. When the dispersal is very
local (s = 3) and the number of offspring is relatively lowip. 3a)], we see high spatial
variation in the population density within generations. However, between generations the
spatially averaged population density is almost stalfleg [ 4a)]. When dispersal takes
place over a wider range, the spatial populatiensity is relatively homogeneous within
each generationHg. 3(b)], but period 2 oscillations occur in the average population
density over consecutive generatiortsgl 4(b)]. When the number of offspring per
individual is large, then checkerboard patterns appear, where highly populated areas on
one time step become sparsely populated on the Réxt B(c)]. In this case, the average
population density can exhibit chaotic oscillations (not shown, but see below).

Fig. 4 compares the time series from three different individual-based simulations
with those generated by éhCML goproximation [Eq. €)] and the detaministic CML
[Eq. (12)]. For these parameter values, the CML approximation appears to recreate the
population dynamics of the individual-based model. The deterministic CML, however,
always converges to the mean approximation Byj.4s all of the coupled maps become
entrained. Indeed, since diffusion reduces the differences between neighbouring sites, one
can show that the synchronised state is a stable attractor ol BgThe stochstic terms
in Eq. ) are thus essential in replicating the dynamics of the individual-based model.

The stochastic coupled map lattice accusatpproximates théong-term population
dynamics of the individual based model for a wide range of parameter vatiges5
shows ‘bifurcation plots’, where the long-term distribution of populations values for both
the spatially explicit individual-based adel and its coupled map lattice approximation
are plotted against the number of offspribgfor various values ofs. For theg values
of s andb, Fig. 5 also shows the difference between the mean of the time-series from
the individual-based model armbupled map lattice approximation and the difference in
variarce. Especially fos = 2 ands = 3, there is a small difference in mean, which
seems to depend linearly dm This is likely an artefact due to the use of the normal
approximation, Eq.J), for very few sites (four and nine, respectively). The variance is
also similar, but there is a clear deviation arolng 10 when periodic dynamics occur.
However, with the exception &= 3, the approximation is reasonably accurate for values
of b in the region where # mean approximation®(x), hasits first seres of period
doubling bifurcations, i.e., for approximately < 15. The anomaly a¢ = 3 is caused
by it being close to a ‘bifurcation point’, where the global population goes from being
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Fig. 3. Three consecutive snapshots of the imtligi-based simulationsith parameters (&) = 10 ands = 3,

(b)b=10ands =5 and (c)b = 20 ands = 5.

stable to exhibiting period 2 oscillations. Indeed, if we fix= 10 and changs, as in
Fig. 6, we sedhats = 3 is dose to the point at which periodic oscillations appeatr.
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Fig. 4. Time-series sampled after 5000 generatitnsn the individual-based odel (IBM, left column),
the coupled map lattice approximation (CML, middle wah) and the deterministic coupled map lattice
approximation (Deterministic CML, right column) with parameters= 100 and (ap = 10 ands = 3, (b)

b =10 ands = 5 and (c)b = 10 ands = n/2 — 1, i.e., uniform dispersal.

Forb > €*(x~7.39), if dispersl is global, i.e.,s = n/2 — 1, then the population
dengty exhibits oscillations between generatiodg. 6 shows a shift from stable to
periodic population dynamics as the dispersal range increases, both in the individual-based
simulation and in the coupled map lattice approation. For local dispersal the population
density can be stable across generations, whdraseases the population tends to behave
in a similar manner to thease where dispersal is global [e.g., compéce 4(b) and (c)].

Local dispersal can thus be said to stabilise population dynamics.

Approximately wherb > 15 and the dispersal is global the population often has chaotic
dynamics.Fig. 3(c) shows a typical sequence of spatial distributions for local dispersal:
checkerboard patterns appear, where local alezsate between coaining very high and
very low population énsities. Withb in this region, the CML fails to provide quantitative
predictions of the behaviour of the individual-based modiéd (7). However, both the
CML and the individual-based model exhibit either stable or periodic dynamics, whereas
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Fig. 5. ‘Bifurcation plots’ comparing the individithased model (top row) and its coupled map lattice
approximation (middle row) for five different values of the dispersal rasmigéor eachs, the parametem is

sd to the integer multiple o6 closest to 100, i.en = 100, 99, 100, 100, 100 for the five plots respectively.

To produce the bifurcation plots wensilated 5000 generations for eabland plotted the population density of

the last 100 generations. The bottom row of plots wepglpced by taking the absolute value of the difference
between the mean of the last 1000 iterations of the time-series from the individual based model and the mean
of the last 1000 iterations of the time-series from tbaemled map lattice approximation (crosses) as well as the
corresponding absolute value of the diffezerin variance (circles and dashed line).

the normal-approximation and global dispersabdels predict chaotic dynamics. Again,
local dispersal plays a stabilising role in fpe@pulation dynamics, this time causing chaotic
ogillations to become stable or periodic.

4. Analysis

The general pattern revealed by the siatidns of both the @upled map lattice and
the individual-based model is that shorter disgs ranges correspond to greater spatial
variation but less temporal variation in the population dynamics. There is furthermore a
rapid shift from stable to periodic population dynamics as the dispersal range increases.
To understand the effect of local dispersal on population dynamics we consider a simple
system ofl globally coupled patches where reproduction is followed by diffusion and
added stochasticity. LeX! X4, ..., XD. Given €' (el,....¢), a wector of
independent and (9, 1)-distributed random variables, the system can be written as
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Fig. 6. ‘Bifurcation plots’ comparing the individithased model (top row) and its coupled map lattice
approximation (bottom row) fob = 8 offspring (left) andb = 10 offspring (right). For eack we simuated
5000 generations and plotted the populatiengity of the last 100 generations.

XL = D(R(XY, €Y (13)

whereD : R' x R' —» R' andR : R' = R' are defined below. Eq18) is a smplified
analogue of Eq.g), designed to have similar properties.

4.1. Reproduction

To facilitate analysis, the reproductive phase is given by a step function. DRfine
R' > R' component-wise by:

if Xi < Xc

otherwise (14)

A. N Xa

R0 = {Xb
wherex; is component of x € R'. Each of the patches can have two different population
levels, either highxg, or low, Xy, i.e., Xa > Xp. Assuming thak. € (Xa, Xp) the dynamical
systemx!tl = R(x!) will have period 2 population dynamics, such that all patches
o<cillate betweerx, andxp, dthough not necessarily in the same phase. Such oscillations
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Fig. 7. Distribution plots (left) and delay plots (rigtor the individual-based model (columns 1 and 3) and its
coupled map lattice approximation (columns 2 and 4)fet 20 and dispersal range frosn= 3 tos = 7. With
b = 20 the mean approximation, Ed)( has chaotic dynamics.

are typically seen for some parameter values in both the individual-based model and the
coupled map lattice whelm > €?.

4.2. Diffusion

The patches are globally coupled, and we thus deéfim®mponent-wise as
Di (X, €) = (1 — d)Xi +I—jZ;XJ +@6|- (15)

The final term can be considered as repriggg an aggregate of stochasticity from
reproduction and diffusion, ging noise that scales like the noise in the coupled map lattice
approximation [see Egs7)and @)].

4.3. Population dynamics

To study the population dynamics of Ed.3) we track the expected fraction of sites that
equalx, after the reproductive stage. Writ for this fraction. The expected population
density givenp}, is piXa + (1 — p&)Xp.
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Fig. 8. ‘Bifurcation plot’ showing the effect of noise @eriodic population dynamics in a simple and analytically
tractable stochastic coupled map lattice, B@) (The noise added at each site is proportiona /2 [Eq. (15)],
thus scaling as in the coupled map lattice approximation. At each site the reproduction is given b4) Bath(

Xa = 3.6706,xp = 0.9346 andxc = 2.4. These values are chosen for the dynamics to resembletEdhé¢
Ricker map, withb = 10. Specificallyxq andxp are chosen to give the same periodic orbit, whilés on the
boundary of the stable set to the periodic fixed points of the Ricker mapowiti0.

We now degrmine the expected value p§™ conditioned orp}. If a sitei equalsx, at
timet, then stochstic diffusion changes the value to

o
(1 —d)Xa + d(piXa + (1 — pL)Xp) + @e}.

In the reproductive step the site will changextpif and only if

¢ SY2 t t
€ > o (Xc - ((1 —d)Xa + d(paXa + (1 — Pa)xb))) .

Define

3/2
Fab(p,s) = P (ei‘ > 37 [Xe — (1 — d)Xa + d(piXa + (1 — p;)xb))]> :

It should be noted thaty, can be interpreted as the probability that a site in stateill
change tok, in one iteration. A$ — oo we have

pLT = P + Tha(ph. (1 — ) — Tab(ph. S)Ph. (16)
Writing ,ota+1 = g(,o;) we are interestedni the fixedpoints for g?(p) = 9(g(p)),
corresponding to period 2 fixed points for

Fig. 8 shows the expected population density for the fixed points wita- 0.5. When
there is sufficient stochasticity there is only one fixed point, corresponding to a complete
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desynchronisation of the system. As the sade decreases a bifation occurs and two
new stable fixed points appear. Afncreases, these movestg andxy respectively.

This noise induced bifurcation is very possibly what causes the shift in population
dynamics of the CML approximation, Eg6)( as the dispersal range decreases. This
possibility is supported by the qualitative similarity betwe€igs. 6and 8. It is worth
noting that Eq. 13) has gbbal rather than local diffusion. It is thus local stochasticity,
ratherthan spatial structure per se, that leads to the bifurcatidfige. 6and8. In the
individual-based model, local stochasticity and spatial structure are inseparable. The CML
approximation reveals that it is the local stochasticity, in particular, that stabilises the
population dynamics.

5. Discussion

Coupled map lattices are not new in ecology. They have frequently been used to
model population dynamicsHgssdl et al., 1991 Bascompte and Sole, 1994)anosi
and Scheuring, 199Keeling et al., 1997Rees and Paynter, 199Y¥okozawaet al.,

1999 Bjgrnstad and Bascompte, 2Q00%ometimes as an alternat to spaially explicit
individual-based models. The approximatioogosed in this paper provides a direct link
between certain spatially explicit individual-based models and stochastic coupled map
lattices. Relating the two approaches is important since it effectively disentangles the
deterministic and stochastic element of local interaction and dispersal, thus exposing the
role of noise in producing spatial population dynamics.

In this paper we have concentrated on the specific case of scramble competition.
However, a dmilar approach should hold for many other types of interactions.
Specifically,Johansson and Sumpter (20G3)nsidered contest competition, cooperation
and predator—prey systems under uniform dispersal. These examples could easily be
extended into the spatial case, and analysed through the technique presented here.

Through a series of simplifications we haegluced the spatial scramble competition
model to a simple, analytically tractable counterpart, Etg),( which still retains
the important qualitative propertie§i¢)s. 6 and 8). This process has highlighted the
importance of including a stochastic termdoupled map lattice appximations. In single
species models without a stochastic term, diffusion synchronises all maps on the lattice and
the approximation fails. With this stochasterm, not only is the approximation accurate,
but we are als@able to explain how the individual-based model behaves as we change the
dispersal range. Indeed, the increased locailaraphic stochasity when the dispersal
range is short appears to be of particular intaoce in stabilising the population dynamics,
over and above thaff space itself.

Demographic stochasticity plays a central role in explaining why spatial structure tends
to have a stabilising effect on the population dynamieggi and Joshi (200%i)lustrated
the stabilisation phenomena—used to explain why chaos is so infrequent in ecological
time series ldassél et al., 1976 Turchin and Taylor, 1992—by incorporating random
spatial variation into simple difference equations. They found that spatial variation could
indeed have a stabilising role, but provided no convincing explanation of how spatial
variation is maintained. Té coupled map lattice approximation provides a simple yet
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compelling explanation: stabilisation is a result of increased noise from local dispersal
and competition. Furthermore, this stochastigtgelf-maintaining through the generation
of spatially unsynchronised patches.

The route is now clear for other spatially explicitindividual-based models and stochastic
coupled map lattice models to be linkeddhgh the approximation proposed here. The
coupled map lattices applied thus far in ecolbgye, in general, been deterministic models
of predator—prey interactions. Since even small perturbations can have profound effects on
the dynamics of a coupled map lattideo§son and Mackey, 1995these deterministic
models are open to the criticism that the patterns they produce, usually spiral waves, are
simply an artefact of determinism. To address such criticidfilson et al. (1993and
Bascompte et al. (1997have shown that individual-based models can produce the same
types of spatial patterning as their deterministic counterparts. However, the form of these
patterns is strongly dependent on the implementation of individual stochasticity and it is
unlikely that deterministic coupled mapttiees can be derived as a biologically realistic
limit of the individual-based simulation/Xilson et al., 1993

The coupled map lattice approximation can umed to solve the ‘inverse problem’
for deterministic coupled map lattices. @iv a deterministic coupled map lattice, the
interaction function for the corresponding individual-based model can be determined and
the individual-based model constructed. The stochastic terms arising from the individual-
based model can then be calculated. The resultant stochastic coupled map lattice can
be analysed to determine whether large-scale patterns can be maintained under the
assumptions necessary for a biologicallylisti individual-based model. For the single
species model described here it was stoticdyg that produced the spatial checkerboard
pattern, while for the predator—prey model describedHbgsdl et al. (1991he question
is whether or not stochasticity will destroy or significantly alter spiral wave patterns.
Studying such systems has direct relevance to ecology, where the question as to how
to translate the dynamics of populations over different scales has so far resisted a
simple solution. Hopefully, the coupled mdattice approximation will strengthen our
mathematical armoury as we mount further assaults on this problem.

Acknowledgements

We thank Anders Johansson for comments and ideas, Paul Glendinning for careful
reviewing and correction of the manuscript, and the anonymous referee for useful
suggestions. DJTS was funded by STINT, Sweden.

References

Bascompte, J., Sole, R.V., 1994. Spatially inducedrbdtions in single-species population-dynamics. J. Anim.
Ecol. 63, 256-264.

Bascompte, J., Sole, R.V., Martinez, N., 1997. Poputatigcles and spatial patterns in snowshoe hares: an
individual-oriented simuléon. J. Theor. Biol. 187, 213-222.

Bjgrnstad, O.N., Bascompte, J., 2001. Synchrony and secai®d-spatial correlation in host-parasitoid systems.
J.Anim. Ecol. 70, 924-933.

Boerlijst, M., Lamers, M.E., Hogeweg, P., 1993. Evolutigheonsequences of spiral waves in a host-parasitoid
system. Proc. R. Soc. Lond. B 253, 15-18.



A. Bréannstrém, D.J.T. Sumpter / Bulletin of Mathematical Biology 67 (2005) 663-682 681

Bolker, B., Grenfell, B., 1995. Space, persistence and dynamics of measles epidemics. Philos. Trans. R. Soc.
Lond. B 348, 309-320.

Bolker, B., Pacala, S.W., 1997. Using moment equationsirtderstand stochastically driven spatial pattern
formation in ecological systems. Theor. Popul. Biol. 52, 179-197.

Bolker, B.M., Pacala, S.W., Levin, S.A., 2000. Moment methods for ecological processes in continuous space.
In: Dieckmann, U., Law, R., Metz, J.AJ. (Eds.), The Geometry of Ecological Interactions. Cambridge
University Press.

Czaran, T., 1998. Spatiotemporal Models of Popateand Community Dynamics. Chapman and Hall.

DeAngelis, D.L., Gross, L.J., 1992. Individualded Models and Approaches in Ecology: Populations
Communities and Ecosystems. Chapman and Hall.

Diekmann, U., Law, R., Metz, J.A.J., 2000. The GeometiEocological Interactions. Cambridge University
Press.

Ementrout, G., Edelstein-Keshet, L., 1992. Cellular autdanapproaches to biological modelling. J. Theor. Biol.
160, 97-133.

Hassell, M.P., Comins, H.N., May, R.M., 1991. Spatialisture and chaos in insect population-dynamics. Nature
353, 255-258.

Hassell, M.P., Lawton, J.H., May, R.M., 1976. Patterfisdgnamical behavior in single species populations.
J.Anim. Ecol. 42, 471-486.

Iwasa, Y., Nakamaru, M., Levin, S.A., 1998. Allelopathy of bacteria in a lattice population: Competition between
colicin-sensitive and colicin-producing strains. Evol. Ecol. 12, 785-802.

Jagi, S., Joshi, A., 2001. Incorporating spatial variatio density enhances the stability of simple population
dynamics models. J. Theor. Biol. 209, 249-255.

Janosi, .M., Scheuring, ., 1997. On the evolution of dgn dependent dispersal in a spatially structured
population model. J. Theor. Biol. 187, 397-408.

Johansson, A., Sumpter, D.J.T., 2003. From local axtBons to population dynamics in site-based models of
ecology. Theor. Popul. Biol. 64, 497-517.

Johnson, C.R., Boerlijst, M.C., 2002. Selection at the lef¢he community: the importance of spatial structure.
Trends Ecol. Evol. 17, 83-90.

Keeling, M.J., Mezic, |., Hendry, R.J., McGlade, J.nfidaD.A., 1997. Characteristic length scales of spatial
models in ecology via fluctuation analysis. Philos. Trans. R. Soc. Lond. B 352, 1589-1601.

Keeling, M.J., Wilson, H.B., Pacala, S.W., 2000. Reinterpreting space, time lags, and functional responses in
ecological models. Science 290, 1758-1761.

Keeling, M.J. et al., 2001. Dynamics of the 2001 UK faotd mouth epidemic: Stochastic dispersal in a
heterogeneous lands@science 294, 813-817.

Kerr, B., Riley, M.A., Feldman, M.W., Bohannan, B.J.M., 2002. Local dispersal promotes biodiversity in a real-
life game of rock-paper-scissors. Nature 418, 171-174.

Loson, J., Mackey, M.C., 1995. Evolution of probability densities in stochastic coupled map lattices. Phys. Rev.
E (3) 52, 1403-1417.

May, R.M., 1976. Simple mathematical modelghwery complicated dynamics. Nature 261, 459-467.

Mollison, D., 1991. Dependence of epidemic and populatieloaities on basic parameters. Math. Biosci. 107,
255-287.

Murray, J.D., 1989. Mathematical biology. Inidnathematics, vol. 19, Springer, Berlin.

Nicholson, A.J., 1954. An outline of the dynamics of animal populations. Austr. J. Zool. 2, 9-65.

Nowak, M.A., May, R.M., 1992. Evolutionargames and spatial chaos. Nature 359, 826-829.

Pacala, S.W., Tilman, D., 1996. Limiting similarity inenhanistic and spatial models of plant competition in
heterogeneous environments. Am. Nat. 143, 222-257.

Pasaual, M., Levin, S.A., 1999. From individuals to populatioergities: Searching for the intermediate scale of
nontrivial determinism. Ecology 80, 2225-2236.

Rand, D.A., Wilson, H.B., 1995. Using spatio-temporal chaod intermediate-scale determinism to quantify
spatially extended ecosystems. Proc. R. Soc. Lond. B 259, 111-117.

Rees, M., Paynter, Q., 1997. Biological control of sbabooom: modelling the determinants of abundance and
the potential impact of introduced insect herbivores. J. Appl. Ecol. 34, 1203-1221.

Ricker, W.E., 1954. Stock and recruitment. J. Fisher. Res. Board Can. 11, 559-623.



682 A. Brannstrom, D.J.T. Sumpter / Bulletin of Mathematical Biology 67 (2005) 663-682

Sao, K., lwasa, Y., 2000. Pair approximations for lattice-based ecological models. In: Dieckmann, U., Law, R.,
Metz, J.AJ. (Eds.), The Geometry oftBlogical Interactions. Cambridge University Press.

Sumpter, D.J.T., Broomhead, D.S., 2001. Relatingviddial behaviour to population dynamics. Proc. R. Soc.
Lond. B 268, 925-932.

Thunberg, H., 2001. Periodicity versus chaostire-dimensional dynamics. SIAM Rev. 43, 3-30.

Toquenaga, Y., Fujii, K., 1991. Contest and scramble caiitipn between two bruchid species (coleoptra:
Bruchidae) 2. Larval competition experiment. Resour. Popul. Ecol. 33, 129-139.

Turchin, P., Taylor, A.D., 1992. Complex dynamics in ecological time series. Ecology 73, 289-305.

van Baalen, M., 2000. Pair approximations for differentasal geometries. In: Dieckmann, U., Law, R.,
Metz, J.AJ. (Eds.), The Geometry ofcBlogical Interactions. Cambridge University Press.

Wilson, W.G., Deroos, A.M., Mccauley, E., 1993. Spatiatamlities within the diffusive lotka-volterra system—
individual-based simulation results. Theor. Popul. Biol. 43, 91-127.

Yokozawa, M., Kubota, Y., Hara, T., 1999. Effects of competition mode on the spatial pattern dynamics of wave
regeneration in subalpine &etands. Ecol. Model. 118, 73-86.



	Coupled map lattice approximations for spatially explicit individual-based models of ecology
	Introduction
	Model and approximation
	The spatially explicit individual-based model
	The normal approximation
	The coupled map lattice approximation
	Reproduction
	Diffusion
	The deterministic coupled map lattice approximation

	Implementation
	Computational complexity

	Results
	Analysis
	Reproduction
	Diffusion
	Population dynamics

	Discussion
	Acknowledgements
	References


