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Abstract

Although single-species deterministic difference equations have long been used in modeling the dynamics of animal populations, little

attention has been paid to how stochasticity should be incorporated into these models. By deriving stochastic analogues to difference

equations from first principles, we show that the form of these models depends on whether noise in the population process is

demographic or environmental. When noise is demographic, we argue that variance around the expectation is proportional to the

expectation. When noise is environmental the variance depends in a non-trivial way on how variation enters into model parameters, but

we argue that if the environment affects the population multiplicatively then variance is proportional to the square of the expectation. We

compare various stochastic analogues of the Ricker map model by fitting them, using maximum likelihood estimation, to data generated

from an individual-based model and the weevil data of Utida. Our demographic models are significantly better than our environmental

models at fitting noise generated by population processes where noise is mainly demographic. However, the traditionally chosen

stochastic analogues to deterministic models—additive normally distributed noise and multiplicative lognormally distributed noise—

generally fit all data sets well. Thus, the form of the variance does play a role in the fitting of models to ecological time series, but may not

be important in practice as first supposed.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of modeling the dynamics of animal popula-
tions is to understand how population change arises from
the interplay of environmental forcing, density dependent
regulation and inherent stochasticity (Bjørnstad and
Grenfell, 2001; Hilborn and Mangel, 1997). Population
fluctuations can arise from variation in the environment
over time (Walther et al., 2002; Saether, 1997), from
intrinsic ‘demographic’ stochasticity arising from variation
in the number of offspring produced per individual
(Bartlett, 1960; Royama, 1992) and from deterministic
non-linear dynamics, such as cycles and chaos (May, 1976;
Turchin, 2003; Berryman, 1999). The combination of these
e front matter r 2006 Elsevier Inc. All rights reserved.
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effects, coupled with the fact that ecological time-series are
often short and may include observation errors (Valpine
and Hastings, 2002), makes the construction of predictive
mathematical models notoriously difficult (Turchin and
Taylor, 1992). Indeed, the central requirement in develop-
ing mathematical models of population ecology is that
stochastic and deterministic factors can be weighted
appropriately.
The simplest of population models: single-species,

discrete and unstructured population models with first
order feedback have the form

atþ1 ¼ f ðatÞ ¼ atgðatÞ, (1)

where at is the population in generation t and g has a
natural interpretation as the net reproduction rate per
individual for the population. These models have been
derived from first principles, so that the functional form of
g can be related to the type of competition (Hassell, 1975;
Turchin, 2003; Royama, 1992) and the spatial distribution
of the population (Brännström and Sumpter, 2005). In
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these derivations stochasticity in the population is not
usually considered. However, when it comes to fitting these
theoretical models to data, random variation—which is an
undoubtable characteristic of most time series of natural
populations—can no longer be ignored.

The simplest manner in which noise can be incorporated
is through additive normally distributed noise, i.e.

atþ1 ¼ f ðatÞ þ s�t, (2)

where s is the constant of standard deviation and the �t will
be assumed throughout this paper to be independent
random variables, normally distributed with mean 0 and
variance 1 (see for example Hilborn and Mangel, 1997;
Solow, 1998). For the Ricker map it is natural to use a
multiplicative lognormally distributed noise term, such that

atþ1 ¼ bat expð1� at=K þ s�t � s2=2Þ. (3)

This formulation has the convenient property that linear
regression on the fatg plotted against flnðatþ1Þ � lnðatÞg

gives not only fitted values for b and K, but also the
standard deviation, s, which is equal to the error sum of
squares from the regression (see for example Berryman,
1999).

While noise in population time series can arise from
demographic, environmental and observational error, the
way it is incorporated in models such as Eqs. (2) and (3) is
often unrelated to how it was generated. Indeed, the main
influence on the choice of stochastic population model
seems to be the ease with which it can be fitted to data.
Since maximum likelihood techniques can be used to fit
generalised models to data, the ease of using linear
regression should not restrict model choice.

In order to address the need for models which more
accurately capture demographic and environmental noise,
Engen et al. (1998) introduced general definitions of
demographic and environmental variance, as well as
demographic covariance. A central point arising from their
study is that environmental and demographic variance, just
like the expectation, are functions of population size. Since
both the deterministic and the stochastic components of a
time series model must arise from the same set of
reproductive actions and interactions between individuals
in the population, we expect some relationship between the
two. However, the exact nature of this relationship depends
on the type of interactions as well as the relative
importance of demographic and environmental noise.
The aim of this paper is to develop practical stochastic
population models of discrete, single-species population
dynamics with first-order feedback, which combine appro-
priate deterministic and stochastic components.

2. Stochastic population models from first principles

Consider a population of At individuals with discrete
non-overlapping generations indexed by t. Let R1; . . . ;RAt

be the individual contributions to the population in the
next generation and Zt be a random vector describing
various environmental factors (Athreya and Karlin, 1971).
We assume that the Ri are identically distributed random
variables, with expectation and variance conditioned on At

given by mðAtÞ and s2ðAtÞ, respectively, and without loss of
generality we assume that E½Zt� ¼ 0.
If At ¼ at the expected population in the next genera-

tion is

E½Atþ1jAt ¼ at� ¼ E½R1 þ R2 þ � � � þ Rat
� ¼ atmðatÞ. (4)

From this point on, we will assume that At ¼ at and not
state this explicitly. To disentangle environmental and
demographic stochasticity we follow Engen et al. (1998)
and write Ri as a sum of three parts, Ri ¼ E½Ri� þW e þ

W i
d where the respective terms represent the expectation if

we have no information about the environment, the
deviation from this expectation due to environmental
factors, and the difference between Ri and the expectation
in the realised environment this year:

Ri ¼ E½Ri� þ ðE½RijZt� � E½Ri�Þ þ ðRi � E½RijZt�Þ.

Here, E½RijZt� is the conditional expectation given Zt (see
e.g. Grimmett and Stirzaker, 1992). It can be shown that
the two stochastic terms are uncorrelated (Engen et al.,
1998). Then

Var½Atþ1� ¼ Var
Xat

i¼1

Ri

" #

¼ atðs2dðatÞ � tðatÞÞ þ a2
t ðs

2
eðatÞ þ tðatÞÞ, ð5Þ

where s2dðatÞ ¼ Var½W i
d � is the demographic variance,

s2eðatÞ ¼ Var½W e� the environmental variance and tðatÞ ¼

Cov½W i
d ;W

j
d � the demographic covariance.

2.1. Demographic variance

In a constant environment s2eðatÞ ¼ 0 and Eq. (5)
becomes

Var½Atþ1� ¼ Var
Xat

i¼1

Ri

" #
¼ ats2dðatÞ þ atðat � 1ÞtðatÞ. (6)

We now construct a simple first principles argument for
populations where the expected population change is given
by Eq. (1).
Let 0opo1 and assume that each individual produces a

binomially distributed number of surviving offspring such
that the expectation and variance of Ri are given by

E½Ri� ¼ pb and Var½Ri� ¼ bpð1� pÞ. (7)

Here b is the maximal number of surviving offspring that
an individual can have. In general, the contributions Ri are
not independent but we can assume a correlation on the
form

Corr½Ri;Rj� ¼ Cr=ðat � 1Þ.

This is not an unreasonable assumption since environ-
mental and temporal constraints force most individuals to
interact with only a fraction of the total population during
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Table 1

Stochastic population models studied in this paper

Label Stochastic population model Applicability References See

D1 f ðatÞ þ s
ffiffiffiffiffiffiffiffiffiffi
f ðatÞ

p
�t Demographic noise This paper Eq. (8)

D2
f ðatÞ exp

ffiffiffiffiffiffiffiffiffiffi
s2

f ðatÞ

s
�t �

1

2

s2

f ðatÞ

 !
Demographic noise This paper

DW
f ðatÞ exp

ffiffiffiffi
s2

at

s
�t �

1

2

s2

at

 !
Demographic noise 3

E1 f ðatÞ þ sf ðatÞ�t Environmental noise This paper Eq. (9)

E2 f ðatÞ expðs�t � s2=2Þ Environmental noise 1; 2 Eq. (3)

N1 f ðatÞ þ s�t Observation error 1 Eq. (2)

T1 bnat expð�at=nÞ þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nvðat=nÞ

p
�t Eq. (14)

References: 1—Hilborn and Mangel (1997), 2—Royama (1992), 3—Saether et al. (2000). Here f ðatÞ is the expected population in generation tþ 1 given at

individuals in generation t, and s is a constant which, together with the parameters of f is estimated from data, while �t is a normally distributed variable

with expectation 0 and variance 1. The classification of the models after applicability follows the discussion in Section 2.
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a lifetime. The demographic covariance is then

tðatÞ ¼ Cr
bpð1� pÞ

at � 1
.

The model thus described lack density-dependence. As-
suming that b is reduced with density such that b ¼ gðatÞ=p,
Eqs. (1), (6) and (7) give the expectation and the variance of
At

E½Atþ1� ¼ f ðatÞ and Var½Atþ1� ¼ Cf ðatÞ, (8)

where C ¼ ðCr � 1Þð1� pÞ. Thus for stochastic analogues
of Eq. (1) with demographic noise only, the variance is
proportional to the expected population in the next
generation.

2.2. Environmental variance

We now revoke the assumption of a constant environ-
ment and again represent the environment with a random
vector Zt for which E½Zt� ¼ 0. With Ri as before, we
assume that E½Ri� ¼ gðatÞ and aim to derive plausible
expressions for the environmental variance

seðatÞ ¼ Var½E½RijZt� � E½Ri�� ¼ Var½E½RijZt��.

There are many plausible ways in which a population may
be affected by environmental change. We will assume that
environmental fluctuations affects the population multi-
plicatively. This is a general assumption that holds under a
range of conditions, for example when the density-
independent or maximum growth rate of individuals are
affected. Under this assumption E½RijZt� ¼ ð1þ ZtÞgðatÞ

and s2eðatÞ ¼ CgðatÞ
2 where C ¼ Var½Zt�. If demographic

variance can be assumed negligible so that s2dðatÞ ¼ 0 and
hence also tðatÞ ¼ 0 then Eq. (5) takes the simple form

Var½Atþ1� ¼ Cf ðatÞ
2. (9)

In practical applications, the random variable Zt often has
a physical interpretation such as temperature, and enters
the model as an extra parameter gðat;ZtÞ. However, writing
gðatÞ for the expected (average) population change Eq. (9)
will still be applicable provided

Z0t ¼
gðat;ZtÞ

gðatÞ
� 1 (10)

can be assumed independent of at. In this case we take Z0t
as the new environmental variable, for which argument
leading up to Eq. (9) is valid.
If the random variable given by Eq. (10) cannot be

assumed independent of at, it is difficult to give a general
relationship between s2eðatÞ and gðatÞ. However, it is often
possible to be determine a relationship on a case-by-case
basis. For example, for the Ricker model, if the environ-
ment affects the carrying capacity K we can write
E½RijZt� ¼ b expð� lnðbÞat=ðK þ ZtÞÞ. Provided the quoti-
ent Zt=K is small we can use the linear approximations
ð1þ xÞ�1 � 1� x and expðxÞ � 1þ x to get

s2eðatÞ ¼ Var b exp �
at ln b

K

1

1þ Zt=K

� �� �
� Ca2

t gðatÞ
2,

(11)

where C is a constant depending on Var½Zt�, K and b.
Assuming sd ðatÞ ¼ 0 and hence tðatÞ ¼ 0 then Eq. (5) takes
the form

Var½Atþ1� ¼ Ca2
t f ðatÞ

2. (12)

The difference between Eqs. (9) and (12) highlights the fact
that environmental noise is determined by how it enters
into model parameters and an appropriate model should be
chosen to reflect variability in parameters. In what follows,
however, we assume that environmental noise affects the
population multiplicatively with the environmental var-
iance given by Eq. (9).

2.3. Summary of demographic and environmental models

The preceding derivations provides us with plausible
models of demographic noise (Eq. (8)) and environmental
noise (Eq. (9)). Table 1 summarises the models we now test
in the next section. We consider both normal (models D1
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Å. Brännström, D.J.T. Sumpter / Theoretical Population Biology 69 (2006) 442–451 445
and E1) and log-normal (D2 and E2) noise distributions
since although a normal distribution is natural in view of
the central limit theorem, a lognormal distribution may be
favored on biological grounds as it is always positive. Table 1
also includes two models that are not derived in this
section, but have previously appeared in the literature. The
first of these, Model DW, has its origins in diffusion appr-
oximations of continuous population dynamics (Engen
et al., 1998). It was used in an extended form by Saether
et al. (2000) for fitting bird populations and Bjørnstad and
Grenfell (2001) suggested it could be used in fitting of
discrete generation ecological time series provided the
dynamics is not overcompensatory. The second, Model N1,
is commonly used normally distributed additive noise
where the variance is constant, independent of population
size. It can be classified neither as environmental nor
demographic, since it predicts that variance is independent
of population size. It is however a plausible model of
observation error, which can be independent of at (Solow,
1998).

3. Testing the models

We fit the models in Table 1 to time-series first from an
individual-based model based on Sumpter and Broomhead
(2001) and then to experimental data from Utida (1967). In
the model, At individuals are distributed randomly with
uniform probability over n resource sites. Reproduction
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Fig. 1. Time-series from the individual-based model in the absence of environ

offspring, corresponding to stable, periodic and chaotic dynamics, respectively
then takes place at each site independently, such that if the
number of individuals at site i after distribution is
determined by the random variable Ci, then

fðCiÞ ¼
bmin þ Zt if Ci ¼ 1;

0 otherwise

�
(13)

gives the number of individuals passing on to the next
generation, i.e. Atþ1 ¼

Pn
i¼1fðCiÞ. Environmental noise is

represented by Zt�Binðbr; pÞ, a random variable determin-
ing the number of individuals produced per site in the
absence of competition. bmin is the minimum number of
individuals produced, and we define b ¼ bmin þ pbr to be
the expected number of individuals per site. Note that the
demographic noise in this model is entirely due to the
distribution process, i.e. the distribution of the Ci. Fig. 1
shows typical time-series from the model for three different
values of b, in the absence of environmental noise, i.e.
p ¼ 1. As b increases, the population dynamics changes
from stable (bo8) to periodic (8obo15) and chaotic
(b415).
In the case where there is no environmental noise

Johansson and Sumpter (2003) have shown that the
population dynamics of the model are well-approximated
by the stochastic dynamical system

Atþ1 ¼ nF
At

n

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nv

At

n

� �s
�t, (14)
110 112 114 116 118 120

erations

110 112 114 116 118 120

erations
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erations

mental noise, with n ¼ 500 sites and (a) b ¼ 4, (b) b ¼ 10 and (c) b ¼ 18

.
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where FðxÞ ¼ bx expð�xÞ is the well-known Ricker map,
�t�Nð0; 1Þ is a normally distributed random variable with
mean 0 and expectation 1, and vðxÞ is defined by

vðxÞ ¼ bFðxÞð1� e�xÞ þ FðxÞ2ð1� xÞ. (15)

We use this function vðxÞ to define Model T1 in Table 1. In
the absence of environmental noise, T1 serves as a
‘benchmark’ against which the performance of the other
models can be measured.

3.1. Demographic noise

We fitted each of the models in Table 1 with f ðaÞ ¼

ba expða=nÞ to 100 strictly positive (non-extinct) time-series
from the individual-based model with n ¼ 500 sites. The
time-series were all of length 20 and sampled after 100
generations by setting p ¼ 1 we ensured that all stochas-
ticity generated for the individual-based model was
demographic. All three parameters—b, n and s—were
estimated using the method of maximum-likelihood (see
Appendix A), and the estimates are written as b̂, n̂ and ŝ,
respectively. We repeated the simulations we now describe
for n ¼ 100 sites, thus introducing more noise. The results
were similar though the relative difference between the log-
likelihood of the various models were reduced.

Fig. 2 shows the difference between the estimated value b̂

and the actual value b used in the simulations, for models
fitted to data from simulations with a range of b values.
Model T1 gives, for nearly all values of b, the best fit to the
simulation data, in the sense of being least biased in the
estimate b̂. For bo8 the individual-based model has stable
population dynamics (see Fig. 1a). In this case, all models
fit approximately equally well and exhibit the same
consistent bias in parameter estimate. For bX8, the
individual-based model produces first periodic then chaotic
population dynamics (see Fig. 1b and c) and differences
appear between the fit of the models. Contrary to our
predictions about its applicability, the model N1 gives
values of b� b̂ closest to that of T1, for all b. It is however,
only slightly better than the demographic models, D1 and
D2, which produce almost identical estimates b̂ to each
2 4 6 8
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-0.5

0
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1

Number of offspring (

b-
b

^

D1 (D2)
DW

E2
E1

N1
T1

Fig. 2. Bias in the maximum likelihood estimate of the number of offspring for

100 generations from the individual based model in the absence of environme

that did not go extinct were used to estimate the bias. Models for which the p
other. The environmental models E1 and E2 are somewhat
worse than D1 and D2. b̂� b for these models differs in
sign, but not greatly in magnitude. The model DW is
inaccurate for b48, consistently over-estimating b.
Since all our models are based on the same deterministic

framework, we can compare their fitted variance to the
theoretically derived variance vðat=nÞ (see Eq. (15)). Fig. 3
shows variance as a function of population size for models
in Table 1 fitted to time-series from the individual-based
model with b ¼ 10 and n ¼ 500, and the theoretically
derived variance nvðat=nÞ for these parameters. Models D1
and D2 are similar in variance and best approximate
nvðat=nÞ. Despite its good fit to the simulation data, model
N1 does not have a variance that lies particularly close to
that of nvðat=nÞ. The variance of DW is f ðatÞ

2
ðexpðs2=atÞ �

1Þ which tends to infinity as the population goes to 0.
Furthermore, Model DW does not approximate the
theoretically derived variance well, which may explain the
large bias in the estimate b̂.
When fitting models with the same number of para-

meters to a time-series using the method of maximum
likelihood, the likelihood can be used to select one of
the models as the best fit (see e.g. Valpine and Hastings,
2002, p. 69). Thus, in order to distinguish the ability of
the various models to fit simulation data we can compare
the log-likelihood. This is done in Fig. 4. For bX8,
model T1 is consistently the most likely model over a
large number of trials. The likelihood of models D1 and
D2 lie nearest to that of T1, followed by N1, with models
E1 and E2 fitting less well. Model DW is consistently the
least likely model. Fig. 4 also shows the probability that
model D1 is selected over model E1 (i.e. the proportion of
fittings that D1 has a higher log-likelihood than E1).
Despite the absence of environmental noise, model E1
has a slightly higher probability of being selected than
D1 for bo8. As b increases, however, the demographic
models are more likely to be selected, such that for b412
there is more than 90% probability of selecting Model D1
over model E1. This is not surprising, since transitions
will take place over a wide range of population sizes,
which makes the functional form of the variance more
important.
10 12 14 16 18

b) used to generate data.

the models in Table 1 when fitting to time-series of length 20, sampled after

ntal stochasticity and with n ¼ 500 sites. 100 time-series from populations

arameter estimate differed only slightly have been grouped together.
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comparison is the theoretically derived variance for these parameter values given by nvðat=nÞ with v defined by Eq. (15).
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3.2. Environmental noise

By setting po1 in the individual-based model we
introduced environmental noise into the time series. For
a fixed population at the individual-based model’s demo-
graphic variance scales with n, while the environmental
variance scales with n2 (see Eqs. (5) and (14)). Thus, by
increasing n we increase the relative proportion of
environmental noise. We compared the models D1 and
E1 by fitting them to time-series generated by the
individual-based model with increasing values of n.

Fig. 5 shows the probability that Model D1 has higher
log-likelihood than E1 as a function of n, with p ¼ 0:5 and
br ¼ 8. When b ¼ 5 (i.e. bmin ¼ 1) the individual-based
model has stable population dynamics and there is little
difference between the models. However, as in the case of
demographic noise, model E1 is selected more often than
D1, even for small n. When the population dynamics are
periodic (b ¼ 12), the probability of selecting D1 over E1
decreases with n. A similar effect is observed for chaotic
population dynamics (b ¼ 16), with E1 being chosen over
D1 only for n42000. This is not surprising since in this last
case a typical time-series will contain many transitions
from large to small populations (see Fig. 1c), and in these
demographic stochasticity often dominates.

3.3. Experimental data

To test the techniques against experimental laboratory
data, we model the population dynamics of the southern
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cowpea weevil, Callosobruchus maculatus (Utida, 1967).
The population data consists of four carefully arranged
experiments where weevils were kept in a constant
environment. The population was censured and supplied
with fresh food every 25 days, approximately the start of
each new generation. The advantage of fitting our models
to this data set is that it should be free of environmental
noise and observation error, thus allowing us to test the
applicability of our demographic noise models.

By calculating the autocorrelation function and the
partial rate correlation function we could confirm that the
weevils’ dynamics are driven by first-order feedback
(Berryman, 1999). We thus modelled the expectation with
the theta-Ricker map, f ðatÞ ¼ nbat expða

y
t =nyÞ and fitted the

stochastic population models in Table 1 using the method
of maximum likelihood. Parameter estimates for the model
with highest likelihood in each of the four replicates are
given in Fig. 6. In three out of four cases an environmental
model gave the best fit to the data, while in the other case
the observation error model, N1, gave the best fit.
Although the demographic models had only slightly lower
log-likelihoods, they failed to provide the best fit to any of
the laboratory based data.

4. Discussion

A recent trend in ecology is that general ‘principles’ or
‘laws’ of population dynamics (Berryman, 1999; Turchin,
2003) are starting to gain acceptance. The ‘principles’ or
‘laws’ that have been considered so far are all concerned
with the expected population change. In this paper we
search for corresponding principles for stochasticity arising
from demographic and environmental sources. If firm
principles of population change can be established, it
would significantly facilitate the reconstruction of under-
lying ecological processes from experimental data (Jonzén
et al., 2002).
The link between deterministic and stochastic models is

not as strong as one may initially think. From a stochastic
model we can recover a deterministic skeleton in a number
of ways; usually by taking the expectation or the mode.
The opposite task, to construct a stochastic population
model incorporating a fair amount of biological realism
from a deterministic skeleton, is considerably more
difficult. The ‘first-principles’ approach taken here is to
state assumptions about individual interactions and derive
the stochastic population dynamics as a consequence. Such
reasoning allowed us to derive a generic model of
demographic stochasticity, where the variance is propor-
tional to the expectation (Model D1 in Table 1).
Furthermore, building on previous foundational work by
Engen et al. (1998), we constructed a generic model for
populations with intrinsic growth-rate affected by environ-
mental stochasticity, such that the variance is proportional
to the square of the expectation (Model E1 in Table 1).
In situations where populations oscillate stochastically

around an equilibrium, our results are consistent with
Taylor’s power law (Taylor, 1961), which predicts a
straight line in a log–log plot of mean population over
time vs variance around this mean. At equilibrium, the
demographic and environmental models we propose would
give respective slopes 1 and 2 in log–log plots, fully
consistent with the observation that most populations have
slopes close to these extremes (Anderson et al., 1982).
However, where periodic or chaotic expected dynamics are
combined with demographic and environmental noise we
would not necessarily expect Taylor’s law to hold. In this
case, the relationship between mean and variance depends
on the combination of the expected dynamics and the noise
type and does not have the generality of Taylor’s law. One
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Fig. 6. Population time-series for Callosobruchus maculatus, the four laboratory experiments under identical conditions performed by Utida (1967) and

corresponding parameter estimates. Each time-series were fitted to each of the generic models in Table 1 with the theta-Ricker map as the expectation. For

each of the four time-series, the parameter estimates for the model with the highest likelihood are given above.
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explanation of the ubiquity of Taylor’s law, however,
might be the stability of many observed populations
(Hassell et al., 1976), but as far as we are aware Taylor’s
law cannot be derived as a general consequence of the
models presented here.

In the absence of environmental stochasticity, our
generic model of demographic noise fitted data from the
individual-based model nearly as well as the theoretically
derived ‘benchmark’. The demographic models were
significantly better than the environmental models, E1
and E2, when fitting to periodic or chaotic time series. This
is not surprising since the variations in population size
brought about by the underlying periodic or chaotic
dynamics cause profound changes in the variance, resulting
in greater difference in likelihood. Somewhat surprising
however was the minor influence of the distribution when
compared to the importance of the relationship between
expectation and variance. Both normally and lognormally
distributed stochasticity fitted the data equally well.

Most ecological time-series are likely to contain sig-
nificant amounts of both demographic and environmental
stochasticity. As the size of a population increases, the
dominant noise component changes from being demo-
graphic to environmental. Our models captured this effect:
as we increased the number of resource sites the best
fitting model changed from being demographic to environ-
mental. Even when there are a relatively large number of
resource sites, up to 2000, the demographic model still
proved the best fit when population dynamics were chaotic.
This is because the uncertainty in the outcome of transi-
tions from large populations to small populations is mainly
demographic. A time-series can thus be viewed as a series
of transitions which differ in the amount of demographic
and environmental stochasticity. In an attempt to capture
all transitions, we have made preliminary attempts (not
shown here) to fit models that include both demographic
and environmental components. The maximum likelihood
of these models did not converge reliably, and the only
known robust approach to separating environmental and
demographic noise is estimation of demographic stochas-
ticity from individual reproductive data (Saether et al.,
2000).



ARTICLE IN PRESS
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The difficulty of applying these ideas in practice was
evident when we constructed stochastic population models
from Utida’s cowpea weevil data. Although the weevils
were kept in a constant environment, the environmental
models, E1 and E2, had the highest likelihood in all but
one case where Model N1 fitted the data best. We can think
of two possible explanations for this. The first would be
that the time-series shown in Fig. 6 do not sample a
sufficiently broad range of population abundances. This
would be consistent with the results obtained using time-
series from the individual-based model. Another explana-
tion could be demographic covariance. With relatively few
individuals in a small space, it is likely that reproductive
success is highly correlated between individuals. As Eq. (5)
shows, this could conceivably lead to a variance-abundance
scaling relationship resembling that of the environmental
models. Where the experiment to be conducted with a
large group in a large area this effect would probably be
reduced as two given individuals in are then likely to
interact less.

Model N1, additive normally distributed noise, fitted the
data best in one of the four time-series and was the best
model at estimating b from the individual-based model,
although not with the highest log likelihood. Despite its
versatility and its common application in fitting ecological
time series, we could not find a first-principles argument, or
any other justification on biological grounds, for using
model N1 to fit to data free from measurement error.
Similarly, the other commonly used stochastic model,
model E2, also proved a good choice when fitted to the
laboratory data. In light of the widespread use of these two
models in the literature, these conclusions should be
comforting.

Less comforting is the implications of model N1’s good
performance for our ‘first principles’ approach. It may be
argued that if model N1 fitted the data well, there is no
need to consider more complicated demographic models. If
the sole aim of an ecological investigation is to fit
parameters of the deterministic skeleton, then this view
may hold some truth. However, models with noise
independent of population size overestimate stochastic
effects for small populations and underestimate them for
large populations. In one highly important ecological
endeavor—the estimation of extinction time—such errors
would have serious consequences for predictions. Our
current results have demonstrated the robust performance
of both demographic and environmental stochastic models.
The further development of these techniques—to include
age-structured populations, population dynamics with
higher order feedback, and environmental change corre-
lated between years—will ultimately increase the certainty
with which extinction events can be predicted.
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Appendix A. Model fitting

Let Y N ¼ ðY 1; . . . ;Y N Þ denote a sample of N consecu-
tive observations from a stochastic process fY tg. We
assume that the probability density function f Y N depends
on a vector of parameters Y, and that fY tg is Markovian.
Thus,

f Y tjY
t�1 ¼ f Y tjY t�1

, (16)

where Y t�1 ¼ ðY 1; . . . ;Y t�1Þ. Intuitively, this means that
the process lacks memory so that once we know Y t�1 our a
priori knowledge of Y t cannot be improved even if we are
given all the samples up to this time.
By definition of conditional distributions and using (16)

we have

f Y N ¼ f Y 1

YN
t¼2

f Y t

f Y t�1

¼ f Y 1

YN
t¼2

f Y tjY t�1
.

Thus, if yN 2 RN is a given time-series we consider it to be a
realisation of Y N and interpret LðYjyNÞ :¼ f Y N ðyN Þ as the
likelihood of the parameters Y given the data. If Lð�; yNÞ is
maximised by some parameters Y� we call Y� a maximum
likelihood estimate for yN . For stationary and ergodic
time-series, the theoretical properties of the likelihood
estimator is well-understood, see Tong (1990) for an
outline of the theory.
We point out that f Y 1

should be interpreted as the
stationary distribution of the time-series. This distribution
can be determined numerically by iterating the model as
many time as needed to reach some termination criteria
for stability. Valpine and Hastings (2002) takes this
approach. We consider only the likelihood of ðy2; . . . ; yNÞ

given y1.
To maximise the likelihood, we minimised the negative

log likelihood using Matlab’s implementation of the
Nelder–Mead simplex algorithm (Press et al., 1992). We
initialised the algorithm with a random set of parameters
drawn uniformly from a bounded set containing the true
parameters. To discourage the algorithm from finding local
minimum outside the set of valid parameters we defined the
log likelihood to be negative infinity for values outside this
set. The algorithm was then restarted until no improvement
could be found in 20 consecutive runs.
To determine the set of valid parameters we examined

several first-principles derivations of the Ricker map and
included parameters that were ecologically realistic. The
carrying capacity was bounded at 10 times the average of
the time-series.
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