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Abstract We measured the shape of the foraging trail
networks of 11 colonies of the wood ant Formica aquilonia
(Formica rufa group). We characterized these networks in
terms of their degree of branching and the angles between
branches, as well as in terms of their efficiency. The
measured networks were compared with idealized model
networks built to optimize one of two components of
efficiency, total length (i.e., total amount of trail) and route
factor (i.e., average distance between nest and foraging
site). The analysis shows that the networks built by the ants
obtain a compromise between the two modes of efficiency.
These results are largely independent of the size of the
network or colony size. The ants’ efficiency is comparable
to that of networks built by humans but achieved without
the benefit of centralized control.
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Introduction

Transport networks are observed at all levels of biological
organization. Fungi (Bebber et al. 2007), slime molds
(Nakagaki et al. 2004a, b), and human societies (Gastner
and Newman 2006) all build networks that allow the
movement of materials through their environment. One of
the most striking examples of these transport networks are
the trail systems formed and used by many different species
of ants. Ants typically forage for food from a central nest,
building a network of trails radiating out to nearby food
sources. These networks are typically dendritic in form
(Hölldobler and Möglich 1980; Hölldobler and Wilson
1990). Each trail starts from the nest as a single thick
pathway out of the nest. This “trunk” splits first into thinner
branches and then peters out as the distance from the nest
increases into twigs, often barely distinguishable in the
undergrowth.

While sharing this dendritic form, there are often
between-species differences in the time for which trails
persist and the mechanisms used in their construction. In
army ant species (Schneirla 1971; Topoff 1984; Franks
1989), as well as in Leptogenys processionalis (Ganeshaiah
and Veena 1991) and Pheidologeton diversus (Moffett
1988), swarm raid trails last for short periods of time (i.e.,
for a day or less) and result from strong positive feedback
from recruitment pheromones. Other species like wood ants
(Chauvin 1962; Rosengren and Sundström 1987), leaf-
cutter ants (Weber 1972; Shepherd 1982; Vasconcellos
1990), and harvester ants (Hölldobler 1976; Hölldobler and
Möglich 1980; Lopez et al. 1994; Detrain et al. 2000;
Azcarate and Peco 2003) produce physical trails that can
last from several weeks to months and in some cases endure
the winter hibernation period (Weber 1972; Hölldobler and
Möglich 1980; Rosengren and Sundström 1987; Fewell
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1988). In addition to leaving pheromones, workers of these
species clear trails of vegetation and debris and sometimes
construct walls or tunnels around them (Shepherd 1982;
Kenne and Dejean 1999; Anderson and McShea 2001) to
form highways which allow large numbers of ants to travel
quickly to food.

The short lasting raid patterns by the army ant
(Deneubourg and Goss 1989; Franks et al. 1991) and the
predatory ant L. processionalis (Ganeshaiah and Veena
1991) have been measured in detail. These raiding ants
build exploratory networks which trade off between the
cost of travel and the area over which they search for prey
items. The networks tend to contract once resource items
are located and foraging is then focused on the resource.
Studies of permanent or semi-permanent trunk trails have
been less detailed, despite the key role of these networks in
sustaining the colony. Most empirical studies report
measurements of the structure of only one or a few trails
from one colony (Hölldobler and Möglich 1980; Rosengren
and Sundström 1987) or concentrate on identifying the
territory of different colonies rather than the trail structure
(Elton 1932; Hölldobler and Möglich 1980). The size of
territories–feeding areas and length of trails vary a lot
between species (e.g., Pickles 1935, 1936, 1937, 1938;
Brian 1955; Rosengren and Sundström 1991; Schlick-
Steiner et al. 2006). In cases where there are data available
on the structure of the trail networks, it is usually presented
graphically without quantitative analysis of the properties
of the networks.

Graph theory provides a rich framework to quantify
network structures, identifying invariants in network topol-
ogy and categorizing different classes of networks
(Bollobas 1998; Newman 2003). For example, graph theory
has been applied to street networks and underground ant
nests to show that these networks achieve very high levels
of directness of paths (how close paths are to the beeline
distance) and robustness to random disconnections for a
very small increase in total length in comparison to the
shortest network possible (Latora and Marchiori 2001; Buhl
et al. 2004, 2006; Cardillo et al. 2006; Bebber et al. 2007).
The networks built by the fungus Phanerochaete
velutina or the slime mold Physarum between food
sources have been studied in terms of their length and
vulnerability to the breaking of one or more links
(Nakagaki et al. 2000, 2004a,b; Bebber et al. 2007).
These studies have shown that even very simple organ-
isms can produce highly efficient networks.

An early and central paradigm to the study of dendritic
networks was the “Horton–Strahler” (Horton 1945; Strahler
1957) analysis. This method quantifies the ordering of
branching and has led to the identification of empirical
scaling relationships in the distribution of branching seg-
ments’ size and number in river networks of different sizes

(Dodds and Rothman 2000a, b, c), leaf patterns (Pelletier
and Turcotte 2000), and even predatory ant trail patterns
(Ganeshaiah and Veena 1991). However, in order for these
metrics to provide interesting scaling properties, networks
must have a degree of branching greater than that observed
in most ant trunk trail networks; other branching numbering
methods (e.g., the one used by Lopez et al (1994)), which
do not allow the same scaling invariance analysis, must be
used. Another key metric of network structure is the angle
of branching at junctions in the network (Acosta et al.
1993). Branch order and angles are descriptive measures
that are useful to characterize and differentiate network
topologies; they do not however quantify the efficiency of
networks.

Recently, Gastner and Newman (2006) proposed a
number of basic statistical tools for studying the efficiency
of tree-like networks with a central point. We can think of
these transport networks as graphs, consisting of set of
vertices (e.g., underground stations or food sources) joined
by edges (e.g., railway track or ant trails) and all joined,
possibly via a number of intermediate vertices (called a
path), to some central vertex (e.g., a city center or an ants
nest). Newman and Gastner state that an efficient transport
network has two important properties. Firstly, the distance
from each vertex to the central vertex should be relatively
short. This property is characterized by the route factor,
which is calculated by taking the average of the path length
(sum of the length of the edges in the path) between each
vertex and the central vertex divided by the direct
Euclidean distance (i.e., the distance as the crow flies)
between the two vertices. In terms of ant trails, a low route
factor corresponds to a relatively short travel time between
nest and food source. The second property of an efficient
network is that its total length (the sum of all edge lengths)
should be low.

The success of ant colonies that forage from a central nest,
such as the wood ant species Formica aquilonia we study
here, is likely to depend both on the length of the path home
for foragers (i.e., low route factor) and the amount of trail
that they need to maintain (i.e., low total length). Fewell
(1988) showed that, for the harvester ant Pogonomyrmex
occidentalis, vegetation structure has a profound effect on
foraging costs because traveling through dense vegetation
decreases speed and increases the Euclidian distance
(stretching in the three-dimensional structure of vegetation)
a forager must travel. In the leaf-cutter ant, Atta colombica,
workers cut and pull on obstructions when their movement is
restricted (Shepherd 1982). Since cleared trails require
maintenance to keep them clear, there is a cost associated
with having too much trail, but these trails are essential for
the rapid transport of resources back to the nest.

Finding the network that minimizes total length of the
edges connecting a set of vertices is a computationally
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difficult problem, known as the Euclidean Steiner tree
problem (Gilbert and Pollak 1968). It belongs to a class of
problems known to be NP-complete (Garey and Johnson
1979). If an efficient algorithm were developed to solve the
Steiner tree problem, it could be employed to solve a whole
range of other computationally difficult problems. For this
reason, it is thought unlikely that such an algorithm exists
in a general setting, although finding nearly minimal
networks in specific cases is usually possible. It is thus
interesting to know whether an ant colony can “solve” such
a problem, not only because the solution would act to
increase the fitness of colony members but also because the
decentralized algorithm employed by the ants could give us
useful insight into how biological systems solve computa-
tionally difficult problems (Bonabeau et al. 2000; Dorigo
and Stutzle 2004).

An additional problem faced in constructing transport
networks is that route factor and total length almost
inevitably conflict. For all but the simplest vertex distribu-
tions, the network that minimizes route factor and the
network that minimizes total length look very different. The
network that minimizes route factor has a star-like shape,
with a direct edge between every vertex and the central
vertex, typically leading to a very high total length.
Conversely, networks that minimize total length tend to
consist of clusters of triangles and long sprawling paths
connecting nearby vertices while leading away from the
central vertex, thus having large route factors (Fig. 1).
However, while a single network can never be optimal in
terms of total length and route factor, Gastner and Newman
(2006) demonstrated that the transport networks con-
structed by humans are often close to optimal in both
properties. While the construction of human networks may

benefit from some form of central planning, individual ants
have a limited ability to plan the overall shape of the
network they construct. The question is thus whether ants
also build efficient transport networks.

Materials and methods

Fieldwork

We characterized the trail networks of 11 colonies of the ant
F. aquilonia, a member of the Formica rufa group of wood
ants. Wood ants are an ideal study species since they build
long-lasting nests, with clear trails spanning large areas.
Fieldwork took place in Bäcksjön, 10 km north of Umeå,
Västerbotten, Northern Sweden (grid reference: NS 63° 97
and EW 20° 24). Data collection took place during July and
August 2005 (colonies 1 to 5) and 2006 (colonies 6 to 11).
We returned to colonies 1 to 5 in 2006 to investigate
whether the position of their trails had changed from 1 year
to the next. The nests were located in areas of dense
Norway spruce (Picea abies) and Scots pine (Pinus
sylvestris) trees and situated on relatively flat rocky ground,
covered with undergrowth of bilberry (Vaccinium myrtillus)
bushes and thick layers of moss.

To establish the structure of each nest, all trails radiating
out from the nest were marked out using bright plastic
sticks. A stick was placed at every bend and junction and at
every 30 cm along the trail. Once the trail became
indistinguishable in the undergrowth it was followed no
further. In order to identify the relative positions of each
stick a 10×10 or 15×15 m grid was laid out using large
wooden poles. The distance from each plastic stick (flag) to

(a) (b)

Fig. 1 Example of a Steiner tree a and a star graph b for a random set
of vertices. The Steiner tree links all vertices (shown as black circles,
except for the central vertex shown in gray) together for a minimal
length; to achieve this, additional vertices can be added (two of them
can be seen at the bottom of the figure where two branching points
have been formed where no vertex was initially present). While the
Steiner tree minimizes total length, it can create considerable circum-

volutions and detours from a beeline path, as can be seen when
traveling from the central vertex (gray circle) to the vertex most on the
right. The star graph, on the other hand, has no detours since it creates
a direct edge linking each vertex to the central one; this, however,
leads to a higher total length, which is particularly obvious in this
example when comparing the lower part of the figure for the Steiner
tree and the star graph
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two poles from the grid was measured using either a laser
distance measurer (Leica Disto Classic, accuracy ±3 mm) or
a 30-m tape measure. The width of the trail and the flow
rate along the trail was measured at flag points at 1-m
intervals along the trail. The position of any tree within 1 m
of a trail was also recorded by measuring the distance from
the trunk at breast height to two poles. Any tree with ants
found on it over 1 m away was also recorded. The
taxonomical group (Norway spruce, Scots pine, or birch
(Betula spp.)), the number of ants on its base, and its
circumference at breast height were recorded for each tree.
In some cases, trails did not end at a specific tree but rather
ended in aggregations of ants. At these aggregations, we
counted the local number of ants and measured the
aggregation positions.

The points generated by the measurement process can be
categorized as being one of four types: we called the nest
the central vertex, the trees and aggregations at the end of
trails resource vertices, the points at which two trails join
are branch vertices and intermediate points on the trail are
intermediate vertices. Vertices were marked every 30 cm or
whenever a branch occurred. The set of edges of the graph,
E, are straight lines joining the vertices between which a
trail was found. Whenever a resource vertex corresponded
to a tree that was not directly linked to trail, an edge was
created between this resource vertex and the nearest vertex
belonging to a trail.

Network efficiency

To analyze the efficiency of the trail networks, we adopted
a similar approach as Gastner and Newman (2006). For
each set of resource vertices (denoted by R), we calculated
the network with a route factor of 1, i.e., the star graph
where every resource vertex is connected by a straight line
to the central nest vertex (labeled c). The route factor for a
graph is given by

r ¼ 1

Rj j
X

i2R

lic
dic

Where lic is the path length from the resource vertex i to
the central vertex c (i.e., the length of the trail an ant would
walk from resource to the nest; see also Fig. 2) and dic is
the Euclidean distance between resource vertex i and the
central vertex c (i.e., the distance in the star graph, which
has a route factor r=1).

The total length is defined as the sum of the length of all
the edges in the network, i.e.,

L ¼
X

i;jð Þ2E
li;j

We calculated the Steiner tree for the set containing all
resource vertices and the central vertex, i.e., R [ cf g. The
Steiner tree for a particular set of resource vertices is the
network (or set of edges) such that the total length is
minimized. In constructing this tree, it is permissible to add
extra vertices, i.e., branch vertices that reduce the total
length. We chose to calculate the Steiner tree rather than the
minimum spanning tree (MST) used by Gastner and
Newman because ant trails clearly have a number of
branching points that do not occur at resource vertices
(and the MST does not allow the addition of new vertices).
While the Steiner tree is a more realistic model of ant trails,
it is not as straightforward to calculate as the minimum
spanning tree (which can be calculated by a simple and
quick algorithm for adding edges (Kruskal 1956; Cheriton
and Tarjan 1976)). We used a modified version of a
custom algorithm developed by Bob Bell (available at
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2

2
2

2

3
3
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ψ
ω

nest (c)

resource i

dic

lic

Fig. 2 Illustration of some trail network characteristics. An illustra-
tive network composed of one trail with two branching points is
shown. The trail is composed of a set of vertices (gray squares,
corresponding to point of measurement) linked by edges (black lines).
For each resource (here, we show one example of a resource i), there
exists a sequence of vertices (each consecutive pair of them linked by
an edge) leading to the nest vertex 0; such as sequence is called a path
(shown in gray). The path length li0 corresponds to the sum of the
length of all edge in the path, which differs from the Euclidian
distance di0 between resource i and nest if there is not a direct edge
between these two vertices. Branching order is shown by the numbers
standing next to each edge and is determined following the method of
Lopez et al. (1994): starting from the nest with a value of 1, branching
order is incremented by 1 for each branching point observed when
moving along the trail and toward its distal dead-ends. The figure also
shows angle measurements performed around branching points (here,
one example is shown as a white circle). The segment of the lower
order, here 1, is called the parent branch, while the two branches
emerging from it (of higher order, here 2) are called daughter
branches. The angle β between the first edges of the two daughter
branches is called the branching angle, while the two other angles are
called side angles, = and ω being the largest and the smallest angles,
respectively. The ratio of ω to = is called symmetry coefficient
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http://www.css.taylor.edu/∼bbell/steiner/), giving similar
results to the Geosteiner algorithm (Warme et al. 1998).
Since finding the Steiner tree is such a computationally
difficult problem, we cannot guarantee that the tree we
have found is optimal for any particular set of vertices,
and we thus refer to the trees as approximate Steiner trees.

To assess the relative position of ant networks between the
two extreme cases of the Steiner trees and Star graphs, we
define the length efficiency L* and the route efficiency r* as
follows:

L* ¼ Lstar � Lant
Lstar � Lsteiner

; and r* ¼ rsteiner � rant
rsteiner � rstar

;

where Lstar, Lsteiner, and Lant are the total length for the star
graph, approximate Steiner tree, and ant network, respec-
tively, and rstar, rsteiner, and rant the route factor for the star
graph (always equal to 1), approximate Steiner tree, and ant
network, respectively. Therefore, a value of L*=1 indicates
an ant network that is as short as a Steiner tree, i.e.,
extremely efficient in term of length minimization, while
with a value of L*=0, the network would be as long as a
Star graph. Similarly, r*=1 indicates a network with the
same route factor as the Star graph, i.e., extremely efficient
in term of route directness, while r*=0 indicates a route
factor as high as the one of a Steiner tree.

Branching order and angles

Branching order was calculated following the method
described by Lopez et al. (1994), where starting from the
nest site with a value of 1, branching order is incremented
by 1 for each branching point observed when moving along
the trails and toward their distal dead-ends (Fig. 2). For
example, a “Y”-shaped trail has got one initial sub-trail of
order 1 and the two new branches have a branching order of
2. A trail branching order is the highest branching order
observed among all its sub-components.

For each branching point, we measured the branching
angle as the angle formed between the branching vertex and
the two first vertices on each daughter branch (Fig. 2). The
two other angles, the side angles, are the one formed
between the first vertex on each daughter branch and the
last vertex before the bifurcation on the main trail from
which the branches are originated. The symmetry coeffi-
cient corresponds to the ratio between the smallest and the
largest side angle.

Statistical tests

All statistical tests were performed using SPPS 15.0 for
Windows. Kolmogorov–Smirnov tests were used to assess
whether distributions were normal and the Levene tests
were used to test the homogeneity of variance.

Results

Figure 3 shows nine of the measured trail networks while
Fig. 4a,d shows the remaining two. They were composed of
5.82 (±2.04 SD) independent trails on average, each leading
to 23.09 trees on average (±20.51 SD; see Table 1). The
trails led almost exclusively to Norway spruce trees, the
exceptions being a small number of birch trees. There were
no trails to Scots pine trees, despite there being large
numbers of these trees within the area covered by networks.
Not all Norway spruce trees within the foraging area were
exploited by the ants, however, with a large number having
no or very few ants visiting them. The trails of colonies 1 to
5 changed very little from 1 year to the next. We found only
one new trail (by colony 2) in 2006 that we had not
observed in 2005.

Network efficiency

Figure 4 compares two of the ant trail networks to their
respective star graph and approximate Steiner tree models.
The star graphs are clearly different from real ant networks,
with paths to nearby trees being linked to branches from a
common trail. The real trail networks also appear somewhat
different from their corresponding approximate Steiner tree,
which have no clear trunk trails or an obvious central route
vertex. The results seen in Fig. 4 are typical for the star
graphs and Steiner trees of the other trail networks.

Table 1 presents the total length of the empirical trail
networks and their respective star graphs and Steiner trees.
On average, the ants’ networks (<Lant>=343.98 m±269.98
SD) were only slightly longer than the Steiner trees
(<Lsteiner>=223.5 m±153.57 SD) and much shorter than
star graphs (<Lstar>=1,313.91 m±1,398.50 SD), and their
length efficiency L*=0.810±0.198 indicates a length
efficiency nearer to that of the Steiner graph than the star
graph. There were significant differences in the total
network length between ant networks, Steiner trees, and
Star graphs (analysis of variance (ANOVA): F2, 30=5.619,
p=0.008); more precisely, post hoc tests (Tukey) showed
no significant difference between ant networks and Steiner
trees (mean difference=143.3, p=0.914) but a significant
difference for both of these groups with the star graphs
(mean difference with ant networks=1,090.4, p=0.031;
mean difference with Steiner trees=1,090.4, p=0.012).

The average route factor of the empirical networks was
only 1.133±0.072 (a low value close to 1 which is the route
factor of star graphs, by definition), compared to an average
route factor of 1.402 (±0.18) for the approximate Steiner
trees (ANOVA: F1,20=21.613, p<0.001). The value r*=
0.623±0.203 indicates route efficiency nearer to that of the
star graph than the Steiner tree. Furthermore, the efficiency
of ant networks was not significantly influenced by their
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total length (Pearson r=0.223, N=11, p=0.510 for the
length efficiency; r=−0.437, N=11, p=0.179 for the route
efficiency) or the number of trees visited (Pearson r=0.402,
N=11, p=0.220 for the length efficiency; r=−0.399, N=11,
p=0.224 for the route efficiency). Thus, ant networks were
always closer to Steiner trees in terms of total length, while
they were always closer to Star graphs in term of the
directness of their routes to food sources.

Branching order and angles

The networks have a clear dendritic structure, repeatedly
branching as the trails become further away from the
nest. There is a strong variability in the length and
degree of branching reached by trails (Fig. 5). The
median trail length from the nest to the end of a path was
27.97 m and median branching order was only 2. However,
the maximum trail length was 279.63 m with nine
successive branchings. Overall, the distribution of trail

branching order (the maximum number of successive
branching points along the paths going from the nest to
the ends of a trail) was highly skewed, similar to that
observed in harvester ants (Lopez et al. 1994). There was a
strong correlation between branching order and total trail
length (Pearson r=0.839; N=64; p<0.001). Within a trail,
the length of trail segments (sub-trail length) that link an
end of the trail to a branching point or two successive
branchings is highly variable as well, following a lognor-
mal distribution [one sample K-S goodness-of-fit test for a
normal distribution, performed on log-transformed data: Z=
0.875, N=304, p=0.428; geometrical mean μ=6.775 mx/
1.7; x/ denotes multiplicative standard deviation, following
Limpert et al. (2001)] similar to that observed in harvester
ants (Lopez et al. 1994).

Figure 6 shows a distribution of branching angles, the
mean±standard deviation for these angles taken over all
networks was 49.33°±29.9 (N=116). The ratio between the
two other angles (between each daughter branch and the

Fig. 3 Trail networks of the wood ant F. aquilonia and exploited
resources, studied at Bäcksjön, Sweden. The figure shows the trail
networks produced by all the ant colonies studied (excepted colonies 1
and 11 shown on Fig. 2). Trails are indicated by the solid lines, with
each black circle indicating a point of measurement. The nest is

situated at the convergence of all trails. Gray squares indicate resource
vertices (mainly trees) that stand at the end or on the side of the trails.
The colony number is given next to each trail network and also
corresponds to the number indicated in Table 1
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parent branch, the ratio being the smallest of these two
angles over the other one) has an average value of 0.8127
(±0.15), indicating predominantly symmetric branching
(Fig. 6b). The distribution is however skewed due to a
small number of asymmetric branches, where one of the
daughter branches is in the same direction as and the other
is perpendicular to the parent branch (Fig. 6c). The largest

branching angles seemed to occur when trails branched on
some heterogeneity in the environment, for example on a
log. Two of the measured networks were found in areas
where there were man-made paths or tracks. In these cases,
the human paths were incorporated into the network,
providing straight trails stretching over relatively long
distances (e.g., colony 2 in Fig. 1).

Table 1 Characteristics of 11 F. aquilonia trail networks observed at Bäcksjön, Sweden, compared to approximate Steiner trees and star graphs

Colony Trees Trails Branching
points

Total length Route factor

Steiner
graph

Ant
trails

Star
graph

Length
efficiency

Ant
trails

Steiner
graph

Route
efficiency

1 21 7 24 288.51 447.12 1,302.09 0.843 1.108 1.363 0.702
2 23 7 22 350.12 565.37 1,050.23 0.692 1.079 1.655 0.860
3 1 3 1 44.39 69.04 78.74 0.287 1.069 1.318 0.723
4 5 6 1 84.17 119.19 205.96 0.712 1.060 1.156 0.460
5 5 2 2 48.91 49.22 124.86 0.996 1.074 1.177 0.529
6 18 9 12 231.69 378.70 1,003.73 0.810 1.154 1.676 0.791
7 31 8 8 204.41 310.15 949.75 0.858 1.136 1.596 0.753
8 22 6 6 214.85 259.47 1,451.75 0.964 1.098 1.414 0.727
9 8 5 2 110.98 132.64 342.50 0.906 1.129 1.254 0.421
10 57 5 11 323.96 492.46 3,939.16 0.953 1.118 1.410 0.710
11 63 6 30 555.97 960.44 4,004.26 0.883 1.357 1.408 0.174
Mean 23.09 5.82 10.82 223.50 343.98 1,313.91 0.810 1.126 1.402 0.623
SD 20.51 2.04 10.23 153.57 269.98 1,398.50 0.198 0.083 0.178 0.203

The table shows the number of trees (within 1-m distance from the trails), independent trails, and branching points for each colony studied. The total
length, shown for each ant trail network, and the corresponding approximate Steiner trees and Star graphs were calculated by adding the length of all
edges in the graphs. The route factor was calculated for the approximate Steiner tree and the ant trail network (the route factor for the star graph is
always 1). The length and route efficiency shows where the ant trail network stands between the approximate Steiner trees and the star graphs (see
text for details)

Fig. 4 Two examples of ant trail networks (a, d, same representation
as in Fig. 1), their corresponding star graphs (b, e) that connect each
resource by a direct edge to nest entrances, and approximate Steiner

trees (c, f) which connect all resources (small plain circles) to the nest
(indicated by the larger black circle) by minimizing to the total length
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Discussion

The route factor and the total length provide two useful
measures of transport network efficiency. For the trail
networks of F. aquilonia studied here, both of these factors
were small. In particular, the route factor for the real
networks was significantly lower than that for the network
that minimizes total length, and the total length for the real
networks was lower than that of the network that minimizes
route factor. Comparison to human networks allows us to
put the efficiency of ant networks in a wider context. The
average route factor of 1.13 found in the ants was equal to
that of the most efficient human transport network in
Gastner and Newman’s (2006) study of four different rail,
gas, and sewage networks. Even the largest ant network has
a route factor that lies well within the range (1.13 to 1.59)
found for human networks. Ants are able to achieve route
factors comparable to that of humans without the benefit of
centralized planning. The average total length for the ants
divided by the total length for the approximate Steiner tree

(Gastner and Newman’s edge length factor) was 1.45±0.22,
range 1.01 to 1.73, and lies within the range of edge length
factors for human networks (1.12 to 1.63).

There has been a great deal of theoretical interest in
mechanisms of network growth, to which our observations
provide valuable data. Gastner and Newman proposed two
models of network growth based on adding edges one by
one, each time choosing a new vertex to join to the network
based on it minimizing a distance criterion. These models
work well at producing networks that look like human
transport networks and the ant networks we present here.
However, the model assumes a central planner which
assesses all available unconnected vertices and decides to
link the one which minimizes the desired criteria. Such a
central planner is not present in ants and networks instead
arise from the repeated interactions of large numbers of
individuals. For example, Rosengren and Sundström (1987)
observed that at the start of the spring season the wood ants
leave the nest in synchronized bursts and move all over the
ground and climb most of the trees within a radius of 30 m
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from the nest. Through this exploration, ants presumably
find new and old food sources and pick up old trails
which are then re-enforced. Various cellular automata
models have shown how dendritic structures can emerge
from interactions between pheromone laying and follow-
ing individuals (Deneubourg and Goss 1989; Edelstein-
Keshet et al. 1995). It would be interesting to compare the
route factor and edge length factor of these models to those
of the networks we have studied here in order to assess the
plausibility of these mechanisms in explaining how net-
works are formed.

A major clue to the mechanisms behind network
construction is found in the branching angle. Here, we
found a trail branching angle of 49.33°±29.9. This is close
to, though slightly smaller than, the branching angles
observed in leaf-cutter ants (55.6°±12.8) and harvester ants
(51.6°±16.7; Acosta et al. 1993), as well as from Pharaohs’
ants (53.4°±13.8; Jackson et al. 2004). Several other
topological measures such as the sub-trail–link length, tree
order, and branching angle distributions are close not only
to other trunk trail ant species such as harvester ants but
also to other biological networks such as neuronal dendrites
and rhizomatous plants (Ganeshaiah and Veena 1991;
Lopez et al. 1994). This may be taken to suggest either a
common mechanism in the way these networks are
constructed or a universality in the properties of these
networks which is mechanism independent.

Acosta et al. (1993) provide an intuitive argument for
how branches arise in trails. They argue that when a forager
finds a resource at a point perpendicular to an established
trail it returns to the established trail leaving pheromone as
it goes. This forager and subsequent foragers, which have
followed the pheromone to the resource, will have a
tendency to walk towards the nest thus diverting the newly
formed trail such that the branching angle decreases. A
computer simulation model which formalizes this argument
is the active walker model (Helbing et al. 1997; Schweitzer
et al. 1997). These models show that when trails are not
particularly attractive, possibly because the environment
offers little walking resistance, then star-like links between
resources and nest will form. On the other hand, if the trail
is attractive, by providing travel at lower walking resis-
tance, then branching structures begin to form. In general,
the branching angle should depend on the attractiveness of
the trail with higher environment resistance leading to more
branching. Again, work is needed to compare this model
against our dataset.

It is important when we think about mechanisms for
network growth, be it in ant, human, or other networks, that
we do not consider the environment as merely a static entity
for which a network solution is constructed. A large
proportion of Norway spruce trees within the range of the
trail networks are not visited by the ants. Wood ants have a

symbiotic relationship with the aphids that live in these
trees: aphids support ants with honeydew while the ants
nurse and protect the aphids. If the ants are not present in a
particular tree, the aphids are subject to heavy predation
and quickly drop in numbers and these trees become less
attractive to the ants. There is thus positive feedback such
that areas with trails attract the development of more trails.
A similar process is probably at work in human urbaniza-
tion. The construction of a railway or gas line to a particular
place not only supplies that area but stimulates further
economic development there and motivates further con-
struction in this area. Network construction is a dynamic
process that simultaneously optimizes for and changes the
environment in which it occurs.
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