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Noise improves collective decision-making
by ants in dynamic environments

A. Dussutour1,2,*,†, M. Beekman1, S. C. Nicolis3 and B. Meyer4,†

1School of Biological Sciences and Centre for Mathematical Biology, The University of Sydney,

New South Wales 2006, Australia
2Centre de Recherches sur la cognition Animale, Université Paul Sabatier, 31062 Toulouse, France
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Recruitment via pheromone trails by ants is arguably one of the best-studied examples of self-organization

in animal societies. Yet it is still unclear if and how trail recruitment allows a colony to adapt to changes in

its foraging environment. We study foraging decisions by colonies of the ant Pheidole megacephala under

dynamic conditions. Our experiments show that P. megacephala, unlike many other mass recruiting

species, can make a collective decision for the better of two food sources even when the environment

changes dynamically. We developed a stochastic differential equation model that explains our data quali-

tatively and quantitatively. Analysing this model reveals that both deterministic and stochastic effects

(noise) work together to allow colonies to efficiently track changes in the environment. Our study thus

suggests that a certain level of noise is not a disturbance in self-organized decision-making but rather

serves an important functional role.

Keywords: decentralized decision-making; mass recruitment; Pheidole megacephala; pheromone trails
1. INTRODUCTION
Groups of animals often make decisions collectively with-

out any central control or coordination (Camazine et al.

2001; Couzin et al. 2005). Probably, the best-studied

animal groups are the social insects where colony-level

decisions emerge from simple interactions between myr-

iads of individuals that only process local information

(Camazine et al. 2001; Detrain & Deneubourg 2006,

2008). For example, both ants and bees are capable of

selecting the best nest site out of several alternatives

during emigration and reproductive swarming (Mallon

et al. 2001; Seeley & Buhrman 2001). Honeybee (Apis

mellifera) colonies are able to allocate most of their fora-

gers to the best possible food patches while largely

ignoring patches of inferior quality (Seeley 1995).

Likewise, ant colonies form trails to food sources that

follow the shortest path (Goss et al. 1989; Beckers et al.

1992; Vittori et al. 2006) and more generally maximize

foraging time (Dussutour et al. 2006). Such ant trails

are formed using pheromones, chemicals that the ants

leave behind when returning to the nest from a profitable

food source in order to mark the path leading to the food

(Hölldobler & Wilson 1990). These pheromones recruit

other nestmates to foraging activities and guide them to

the discovered food. Newly recruited foragers in turn

reinforce the trail with their own pheromone, thus

increasing the probability that other ants will also use

and reinforce it.
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Many ant species have to compete for ephemeral food

sources that constantly change location (Pharaoh’s ants,

Beekman et al. 2001; Argentine ants, Human & Gordon

1996), and their capacity to do so is highly dependent

on their ability to adapt the colony’s foraging patterns to

changes in the environment. A particularly interesting

question is how a colony modifies an already established

foraging pattern when a new (and potentially better)

food source is discovered.

Interestingly, the conventional wisdom derived from

controlled laboratory experiments is that many mass-

recruiting ant species are not able to efficiently exploit

the discovery of a better food source once the colony is

already exploiting one (Beckers et al. 1990; Traniello &

Robson 1995) and this is in agreement with the predic-

tions of existing mathematical models (Nicolis &

Deneubourg 1999; Camazine et al. 2001). For example,

in Lasius niger, ants generally do not modify their foraging

path once it has been established even when a shortcut to

a food source is introduced (Beckers et al. 1990).

Here we study the ability of the big-headed ant Pheidole

megacephala to adapt to dynamically changing foraging

conditions. Pheidole megacephala uses mass recruitment

to exploit food sources. We describe experiments that

demonstrate that P. megacephala is able to quickly adapt

its foraging behaviour when food sources appear or disap-

pear. We then introduce continuous stochastic models

based on Itô calculus (Gardiner 2004) and Fokker–

Planck equations (Risken 1989) and apply these to our

experiments. We construct a quantitative mathematical

model that explains our experimental results. Our

model suggests that two factors contribute to the ants’

ability to adapt: randomness in the decision-making pro-

cess (noise) and deterministic components of the ants’
This journal is q 2009 The Royal Society
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behaviour. Our mathematical analysis is supported by indi-

vidual-based simulations that confirm our experimental

findings and validate the formal model.
nest

nest

nest

(b)

(c)

Figure 1. Experimental set-up for dynamic environment.

(a) First phase: 0–60 min, (b) second phase: 60–120 min
and (c) third phase: 120–180 min.
2. MATERIAL AND METHODS
(a) Rearing conditions

We collected 21 colonies of 2000–3000 workers and four to six

queens in Sydney, Australia. Ants were installed in eight tube

nests (10 cm length, 1.5 cm in diameter) covered with black

paper. These tubes were placed in a rearing box

(30*20*15 cm) with walls coated with Fluon to prevent ants

from escaping. Colonies were kept at room temperature (25+
18C) with a 12 : 12 L : D photoperiod. We supplied each

colony with water and a mixed diet of vitamin-enriched food

(Bhatkar & Whitcomb 1970) supplemented with mealworms.

(b) Experimental set-up

In each experiment, a colony was starved for 5 days before

given access to two food sources placed on two platforms

(70 � 70 mm) at the end of a Y-shaped bridge. The two

branches of the Y-shaped bridge differed in length with one

branch measuring 180 mm in length (‘long’) and the

second 60 mm (‘short’) (figure 1a). Food consisted of 3 ml

of 1 M sucrose solution contained in a small cavity carved

in a block of paraffin wax. The whole experimental set-up

was isolated from any sources of disturbance by surrounding

it with white paper walls.

Two versions of the experiment were conducted using

either a static or a dynamic environment. In the dynamic ver-

sion, the ants had access to the food sources via the two

branches for one hour (first phase). After 1 h, the short

branch was blocked at its end (figure 1b), preventing ants

from reaching the food source for one hour (second phase).

After 2 h, the short branch was re-opened allowing ants to

reach the food source again (figure 1c, third phase). In the

static version, the experimental conditions remained

unchanged and the ants had access to both food sources

for 3 h. For each environment, we replicated the experiment

21 times using each colony once. All trials were filmed using

a video camera placed over the bridge.

(c) Data collection

To assess traffic flow at the collective (colony) level, we

measured traffic on both bridges every minute for the duration

of the trials. We measured the flow of outbound ants at a point

1 cm from the junction onto each branch. Counting began as

soon as the first ant discovered the bridge and climbed onto it.

We used a two-way ANOVA with repeated measures on time to

test for the effects of environment (static or dynamic) and time

interval on the flow of workers. To test whether ants preferred

one branch over the other (asymmetric distribution), or

whether they showed no preference (symmetric distribution),

we used a binomial test on the number of ants travelling on

each branch for each replicate. The null hypothesis was that

ants choose both branches with equal probability (Siegel &

Castellan 1988). We assumed that a branch was selected

when the binomial test showed a significantly higher number

of foragers on one branch.
3. RESULTS
(a) Experimental results

Total traffic volume and recruitment were comparable

in the dynamic and the static environment (figure 2,
Proc. R. Soc. B (2009)
two-way ANOVA with repeated measures on time inter-

val: environment effect, F1,40 ¼ 0.45, p ¼ 0.236,

interaction environment � time effect, F179,40 ¼ 1.41,

p ¼ 0.182). The flow reached a peak after about 40 min

in both environments (time effect: F179,40 ¼ 64.10, p ,

0.001). The similarity in recruitment dynamics suggests

that the trail-laying frequency (i.e. the number of ants

that deposit pheromone) did not depend on the

experimental set-up.

Both traffic volume and recruitment dynamics on each

branch were influenced by the environment (figure 2,

two-way ANOVA with repeated measures on time inter-

val: environment effect, F1,40 ¼ 26.80, p , 0.001 and

F1,40 ¼ 8.45, p , 0.001; interaction environment � time

effect F179,40 ¼ 29.05, p , 0.001 and F179,40 ¼ 14.98,

p , 0.001 for the long and short branches, respectively).

In the dynamic environment, traffic on the long branch

significantly increased after the short branch was blocked

and decreased when it was re-opened (time effect:

F179,40 ¼ 37.121, p , 0.001). Conversely, flow on the

short branch significantly decreased after the short

branch was blocked and increased when it was re-opened

(time effect: F179,40 ¼ 57.18, p , 0.001). In the static

environment, the traffic on both branches stayed relatively

constant and followed a typical trail recruitment process

(Pasteels & Deneubourg 1987).

In the static experiment, most ants travelled on the

short branch in 18 out of the 21 replicates after 3 h

(figure 3b, binomial test: p , 0.05). In the dynamic ver-

sion, most ants travelled on the short branch during the

first phase in all 21 replicates (figure 3a, binomial test:

p , 0.05). During the second phase, when the short

branch was blocked, in 18 out of the 21 replicates ants

refocused their traffic on the long branch (figure 3a, bino-

mial test: p , 0.05). Only in one replicate did the ants still

prefer the short branch even though food was no longer

http://rspb.royalsocietypublishing.org/
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Figure 2. Average number of outbound ants per minute crossing the two branches of the bridge over time in (a) dynamic and

(b) static environment. n ¼ 21 replicates for each environment. Filled triangle indicates when the short branch was blocked and
when it was re-opened. Black line, short branch; light grey line, long branch; dark grey line, total flow.
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present. In two replicates, the ants did not choose either

of the branches (i.e. they used both branches equally).

Finally, when the short branch was re-opened, in nine

out of the 21 replicates ants showed a significant prefer-

ence for the short branch after one hour (figure 3a,

binomial test: p , 0.05). In six out of the 21 replicates,

most ants continued to travel on the long branch (bino-

mial test: p , 0.05). In six out of the 21 replicates, both

branches were used equally (binomial test: p . 0.05).

However, if we considered the last 30 min of the exper-

iment, in 16 out of the 21 replicates ants chose the

short branch (binomial test: p , 0.05).
(b) Standard model of mass recruitment

The most widely used class of mathematical models for

foraging in mass-recruiting ant species in static environ-

ments is based on systems of ordinary differential

equations (Deneubourg et al. 1990; Nicolis &

Deneubourg 1999). Let the amount of pheromone on

the two branches be denoted by ci. The probability of

an individual ant to choose either branch is

pi ¼
ðkþ ciÞaP

j¼1;2 ðkþ cjÞa
; ð3:1Þ

where k and a are constants fitted to experimental data.

Each individual forager deposits an amount of phero-

mone qi upon its return to the nest. The total number

of foragers leaving the nest per time unit typically depends

on the amount of trail pheromone present among other

factors. Assuming a total flow of F foragers, the number
Proc. R. Soc. B (2009)
of foragers on branch i is piF and the build-up of the

pheromone levels on each branch is

dci

dt
¼ pi qi F� rci; ð3:2Þ

where r is the rate constant for pheromone evaporation

(Dussutour et al. 2009).

Let branch 2 be the superior path, for example,

because it is shorter or leads to a food source of higher

quality. There are two reasons why branch 2 may attract

more traffic than branch 1. When it is shorter, it receives

pheromone deposits by returning foragers earlier thus

getting a head start in the competition or ants may modu-

late their pheromone deposit depending on the quality of

the food source. While some species modulate the

amount of pheromone deposit explicitly with food or

path quality, other factors, such as home range marking

(Devigne & Detrain 2006) or higher rate of U-turns on

longer branches (Camazine et al. 2001), can also lead to

indirect deposit modulation. As we are only interested

in the fixpoints of the model, we can summarize the

implicit or explicit deposit modulation in all of these

cases by assuming q1 , q2.

The expected steady-state behaviour of the system is

predicted by its fixpoints. It is well known that this

model exhibits either one or three fixpoints (Nicolis &

Deneubourg 1999; Camazine et al. 2001). The first fix-

point corresponds to a proportional usage of branches

(i.e. pheromone on both paths and in the case of equal

deposits q1 ¼ q2 both sources are exploited equally).

The other two fixpoints correspond to the situation

http://rspb.royalsocietypublishing.org/
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Figure 3. Mean proportion of outbound ants per minute crossing the two branches of the bridge over time in (a) dynamic and

(b) static environment. n ¼ 21 replicates for each environment. Black line, short branch; grey line, long branch.
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where predominantly one branch is exploited. The exact

proportion of exploitation depends on the parameters k,

a, F and r and the proportion q1/q2. The fixpoints are

only stable in limited parameter ranges. For k ¼ 0, a , 1,

only the first fixpoint p�1 ¼ ð1þ ðq2=q1Þa=ð1�aÞÞ�1
is

stable, but it exchanges its stability with the other two fix-

points p�1 ¼ 0 and p�1 ¼ 1 at a ¼ 1. For a . 1, the other

two fixpoints are stable: the one that corresponds to

exclusive exploitation of the superior branch as well as

the one that corresponds to only exploiting the inferior

branch. The model has experimentally been fitted to the

behaviour of real ant colonies, specifically for L. niger

with a ¼ 2 and k ¼ 6 (Beckers et al. 1993; Camazine

et al. 2001).

For k . 0, the situation remains in principle

unchanged, but there will always be a residual amount

of exploitation of the less used branch. This amount

depends on k. In the case of identical deposits and a ¼ 2,

the first fixpoint (equals exploitation) is stable only for

ðqF=2rkÞ , 1.

Note that the analysis so far does not predict which of

the two stable fixpoints will be observed in any given

experiment. This depends on the differences between

food source qualities and path lengths and on the

times at which the two sources are first discovered. How-

ever, when the differences (and thus deposit ratio q2/q1)

and the flow F are large enough, the superior branch

will generally be exploited most (Camazine et al.

2001). Once a stable fixpoint has been reached, the
Proc. R. Soc. B (2009)
ants’ behaviour is locked-in regardless of changes in

the reward ratio. A model with these two stable fixpoints

is thus in agreement with the observation that a colony

will not adapt if the better branch is presented with

significant delay.

To apply this model to a dynamic foraging environ-

ment, we need to consider each phase of the experiment

separately and use the final state of each phase as the

starting state of the subsequent phase. If the food sources

change or become unavailable, the reward q1 must be

adjusted accordingly for the next phase. The switch

from phase 2 to phase 3 in our experiments is thus essen-

tially equivalent to presenting the shorter branch with

significant delay. With two stable fixpoints, the model

therefore cannot correctly predict the third phase of our

experiments, where we see a switch back to the shorter

branch after the colony had established a trail onto the

longer branch.
(c) Extended stochastic model

To understand what causes the switch back to the short

branch, we need to analyse which factors influence the

stability of the second fixpoint (c2 , c1, corresponding

to most pheromone on the longer/inferior path). One

factor that is known to have such an effect is the total

flow of foragers. We thus have to take the experimentally

observed decrease in total flow into account. We will not

attempt to model the dependence of the flow on other

http://rspb.royalsocietypublishing.org/
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factors explicitly, but instead match a time-dependent

flow function f(t) to the experimental data (figure 2).

We approximate an upper bound on the flow reduction

by a linear reduction from 100 to 50 per cent from t ¼ 60

to 120 min

fðtÞ ¼
1

0:5þ ð120�tÞ=120

0:5

8<
: for

t , 60

60 � t � 120

t . 120

: ð3:3Þ

Another factor that can influence the stability of the

fixpoints is random fluctuations (noise) in the decision-

making process. Such noise can be caused, for example,

by differences in trail following behaviour between

individuals, by individuals that vary their behaviour over

time or in response to environmental fluctuations.

Our experiments showed large fluctuations in ant traffic

on each branch, thus suggesting that such noise is

indeed prevalent. We approximate noise by integrating

into the standard model a constant level s of additive

Gaussian white noise. By replacing equation (3.2) in the

previous model with its stochastic equivalent, we

obtain a two-dimensional system of Îto stochastic differ-

ential equations as the extension of the deterministic

model

dci

dt
¼ piqifðtÞ � rci þ s

dWi

dt
ði ¼ 1; 2Þ: ð3:4Þ

Such equations, in which Wi denotes a Wiener process

(white noise), define a diffusion in the phase space of the

underlying probability distribution. To simplify the tech-

nical discussion, we rewrite the two-dimensional model

into a single dimension (for details, see electronic sup-

plementary material, appendix A). With a ¼ 2, as fitted

to experiments, we arrive at

dc1 ¼ mðc1Þdt þ sdW ð3:5Þ

with

mðxÞ ¼ q1fðtÞ
ðkþ xÞ2

ðkþ xÞ2þðkþððQ1Q2=rÞ�Q2xÞ=Q1Þ2
� rx;

ð3:6Þ

where c1 is the level of pheromone on the longer (inferior)

branch and Qi ¼ Fqi. We have derived the parameters

for this model by performing a parametric grid search

for the least squares match with the data given in

figures 2 and 3. This yields: k ¼ 12, q1¼ 0.09, q2¼ 0.13

and r ¼ 0.00 085.

We plot dc1=dt at t ¼ 120 for these parameters but

without noise (s ¼ 0) in figure 4a.

Clearly, c1 will eventually converge on one of the axis’

intersections. The first and last axis intersection corre-

sponds to stable fixpoints (exclusive use of a single

source), whereas the middle point is unstable. As is

shown in figure 4a, the flow reduction at t ¼ 120 to 50

per cent of the initial flow reduces the stability of the

highest fixpoint but does not completely destabilize it.

We also observed frequent U-turns in the experiments.

If a large number of ants turn from the long branch to the

short branch without returning to the nest first, then this

could speed up or even trigger the switch back to the

short branch. Again we do not attempt to model the

number of U-turns as a dependent variable, but instead
Proc. R. Soc. B (2009)
view it as a time-dependent parameter u(t) which we

derive from the experimental data. We chose u(t) so as to

approximate the maximum number of U-turns that

could affect the switch from the long to the short branch

(e.g. only U-turns directly from the long branch onto the

short branch are included; this value is derived from exper-

imental observations (A. Dussutour 2007, personal

observation). We integrate U-turns into the model by

modifying the effective probabilities to take either branch

uðtÞ ¼ 0

0:07

�
for

t , 120

t � 120
; ð3:7Þ

�p1ðtÞ ¼ ð1� uðtÞÞ p1ðtÞ
�p2ðtÞ ¼ 1� �p1ðtÞ

ð3:8Þ

and

dci

dt
¼ �piqifðtÞ � rci þ s

dWi

dt
: ð3:9Þ

The effect of adding U-turns is indeed that the second

fixpoint is destroyed and that the colony ultimately

switches back to the shorter branch. This is evident

from figure 4b, which shows the predicted probability to

choose the shorter branch taking U-turns and flow

reduction into account. However, the time needed to exe-

cute the switch is exceedingly high: for the U-turn rates

observed in the experiment, the model predicts that it

will take more than 250 min until both branches are

used equally (p1 ¼ 0.5). This is clearly not consistent

with our experimental outcome. Because we only

included U-turns that could facilitate a switch (ants turn-

ing from the long branch onto the short branch) the

actual time to switch would even be longer than in our

estimate if U-turns were the only mechanism.

If we include noise, our model predictions nicely fit

our experimental observations (figure 4c). Random fluc-

tuations can significantly change the behaviour of the

model because any fluctuation that pushes the phero-

mone level on the longer branch momentarily to the left

of the second axis intersection of dc1=dt in figure 4a will

be amplified and ultimately lead to a switch to the short

branch. The time development of the complete stochastic

model taking noise, flow reduction and U-turns into

account matches the experimental data almost precisely

(figure 4c). It is also worth noting that there is no appreci-

able difference between the predictions of the model that

includes (solid line) and excludes U-turns (dotted line).

This is not really surprising as a U-turn that is ‘unin-

formed’ and not triggered by some explicit information

on the inferiority of the currently used branch could

also be interpreted as a form of noise.

The expected time t(x) for the colony to switch back to

the shorter branch in phase 3 is given by the first passage

time for the model in equations (3.5) and (3.6)

(for details, see electronic supplementary material,

appendix A)

tðxÞ ¼
ðx

a

2

cðyÞ

ðb

y

cðzÞ
s2ðzÞdz

� �
d

with cðxÞ ¼ e

Ð x

a
2mðyÞ=s2ðyÞð Þdy

:

We plot the first passage time against the noise level in

figure 4d. It confirms that a higher level of noise allows

http://rspb.royalsocietypublishing.org/
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a significantly faster switching. Our stochastic model thus

also accounts for the classical experiments like those for

L. niger in which much lower noise levels have been

observed (figure 5, Dussutour et al. 2005). At such low

noise levels, the first passage time is well beyond the dur-

ation of the experiment. We thus expect to see such a

switch only in very rare cases. Note that the stochastic

nature of the model also accounts for the fact that there

is a small fraction of trials in which P. megacephala did

not switch back to the better source.
4. DISCUSSION
Big-headed ants were able to adjust their recruitment as a

function of environmental change. At each stage, most

colonies were able to choose the best foraging opportu-

nity. In the first stage, the short branch was selected

most often. When the food source at the end of the

short branch was removed, the colonies were able to

quickly redirect their foraging activity to the long

branch. Finally, when the food source was reconnected

to the short branch, the ants preferentially exploited this

food source in most trials.

Our modelling reflects known foraging strategies of

both P. megacephala and L. niger. Lasius niger tends

aphid colonies which are more or less permanent food

sources (e.g Flatt & Weisser 2000). This is in contrast

to P. megacephala which is an invasive species that exploits

ephemeral food sources (Dejean et al. 2005, 2007). In

addition to the already known causes for the ecological

dominance of P. megacephala in areas where it has been

introduced including its intrinsic ability to achieve unico-

loniality, the absence or rarity of enemies (Hoffmann et al.

1999; Holway et al. 2002; Wilson 2003), our study

suggests that the ability of this species to react to changes
Proc. R. Soc. B (2009)
in the environment may contribute to its dominance when

introduced into new areas.

A simple deterministic standard model of mass recruit-

ment that includes strong nonlinear trail feedback is

highly sensitive to small differences in trail strength and

fails to fully explain our experimental results. If the flow

of ants is sufficient, the new trail on the short branch

will never succeed in overcoming the continuing recruit-

ment on the long branch. As our analysis has shown, a

deterministic model can only explain our experimental

results if the nonlinear feedback is moderated through,

for example, flow reduction or U-turns. We have also

shown that noise affects the speed with which such

switches occur. In a deterministic model that predicts

switching, c1=c2 can only have a single stable fixpoint.

This typically means a proportional exploitation of both

food sources. It is important to realize that noise can

even make the switch possible if the underlying determi-

nistic model has two fixpoints (and thus does not

exhibit switching). For this reason, taking noise into

account allows us to explain switching even in models

that describe a unanimous collective decision for one of

two choices if both choices have the same utility (rather

than a proportionate exploitation of both sources).

Noise can thus play a beneficial role by facilitating quick

transitions to more advantageous foraging behaviours,

regardless of whether this transition can in principle be

explained through deterministic effects. Similar advan-

tages of noisy decision-making for the efficient

exploitation of food sources have previously been

explored in (Nicolis et al. 2003) for the simpler case of

static environments.

It is possible that additional deterministic influences

are at work in our experiments which our current model

does not capture. Specifically, recent work (Dussutour

et al. 2009) suggests the presence of a second pheromone

http://rspb.royalsocietypublishing.org/
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in P. megacephala which is hypothesized to allow colonies

to track changing foraging conditions more efficiently

than with a single pheromone. However, these exper-

iments used a symmetrical foraging set-up with identical

food sources and thus did not investigate the choice

between two alternatives that differed in quality.

Even though stochastic versions of the standard model

have been studied before, we are only aware of one other

analytical study (Nicolis 2004). Contrary to our study,

Nicolis (2004) analysed the influence of noise on the

choice between two equal food sources in a static environ-

ment. Non-analytical versions of the standard model have

used Monte Carlo simulations to investigate dynamic

scenarios. One such study also showed that noise can

play a functional role in switching between food sources

(Nicolis & Dussutour 2008). The study of Nicolis &

Dussutour (2008) differs from ours in that it did not

verify the model with experimental data nor did it include

an investigation of the type of switch we see in phase 3 of

our experiments, i.e. the switch to a better food source

after the colony has already established a steady-state

foraging pattern for another source.

Generally, Monte Carlo simulations of the standard

model only show the effect of intrinsic noise that orig-

inates from the fact that each ant performs its path

choice as a Bernoulli trial. Our analytic diffusion model

takes additional fluctuations into account that are not

intrinsic to this choice mechanism. What could be the

biological origins of such fluctuations? One well-known

source of noise is related to the ability of foragers to faith-

fully follow a chemical trail. Recruits may lose the trail

and may make ‘wrong’ choices at junctions of the trail.

It has been discussed in earlier work (Deneubourg et al.

1983) that the function of such ‘lost’ foragers may be to

(re)-discover a better food source or a shorter path.

Hence, under dynamic conditions, there is an optimal

error level that minimizes the time needed for discovering
Proc. R. Soc. B (2009)
better food sources and which maximizes foraging effi-

ciency. However, it is important to realize that noise is a

more general phenomenon than ants losing the trail and

may be induced by a large variety of sources. Generally,

the behaviour of individuals never conforms exactly to

the statistical average. Rather it exhibits variations, both

between individuals and for each individual over time.

For example, the amount of pheromone deposit per trip

may vary and individual resting times and recruitment

thresholds may differ (Mailleux et al. 2000, 2003,

2005). Unlike ‘lost foragers’, such fluctuations do not

directly favour the (re)discovery of alternative sources.

Instead, they simply introduce a small amount of variabil-

ity (noise) into the decision-making. Such undirected

noise, as a general systemic feature, can be sufficient to

enable the system to behave adaptively.

(a) General implications for self-organizing

systems

The analysis of our model shows that we gain the most

complete understanding of collective decision-making in

mass-recruiting ants if we interpret it as stochastic attrac-

tor switching. The same should hold true for other related

types of social decision-making, such as market trends

(Weisbuch & Stauffer 2000) or the way innovations are

adopted (Capasso & Bakstein 2005).

Such noise-induced switching between two system

states can in fact be understood as an instance of aperio-

dic stochastic resonance (Gammaitoni et al. 1998), a

phenomenon that is widely observed in natural systems.

Specifically, it enables sensory systems to track subthres-

hold signals (Moss et al. 2004). It also has direct

technical applications, for example, for efficient encoding

of auditory information in cochlear implants (Morse &

Evans 1996). To the best of our knowledge, our analysis

is the first account of aperiodic stochastic resonance in a

macroscopic self-organized system.

http://rspb.royalsocietypublishing.org/
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Our results are not only interesting in the context of

natural systems but may have far-reaching implications

for applications of self-organization in engineering arte-

facts. They are specifically relevant to swarm

intelligence (Bonabeau et al. 1999), i.e. to the design of

self-organized optimization algorithms based on the

mechanisms of collective behaviour in biological groups,

such as ant colony optimization algorithms (Dorigo &

Stützle 2004). Our results indicate that noise should be

taken into account as a constructive component when

engineering such systems: it may be advantageous to

use controlled injection of noise into such systems to

enable them to track changes in the environment

efficiently.
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