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Abstract: Revealing how lower organisms solve complicated problems is a challenging research

area, which could reveal the evolutionary origin of biological information processing. Here we

report on the ability of a single-celled organism, true slime mold, to find a smart solution

of risk management under spatio-temporally varying conditions. We designed test conditions

under which there were three food-locations at vertices of equilateral triangle and a toxic light

illuminated the organism on alternating halves of the triangle. We found that the organism

behavior depended on the period of the repeated illumination, even though the total exposure

time was kept the same . A simple mathematical model for the experimental results is proposed

from a dynamical system point of view. We discuss our results in the context of a strategy of

risk management by Physarum.

Key Words: Physarum, bio-computing, ethology, amoeba, dynamic optimization, nonlinear

dynamics

1. Introduction
Many organisms living in their natural environments are exposed to not only spatial but also to

temporal variations of their surroundings. Thus, even for single-celled organisms, it is reasonable

to expect that an ability to adapt to such external variations is necessary. Physarum has become

a model organism for study of problem solving by single organisms. In the last decade, it has been

shown that the organism can find the optimum solution in some geometrical puzzles: maze, shortest

network problem, risk-minimum path problem and multi-objective optimization problem [1–10]. In

these experiments, however, the experimental conditions are temporally constant while being spatially

inhomogeneous.

Little is currently known about these and other simple organisms ability to deal with a combination
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of spatial and temporal variations. What is known is that Physarum polycephalum can show antici-

patory behaviors in response to a temporally periodic stimulations of environmental conditions while

the spatial conditions are homogeneous [11]. This means that Physarum can adapt to the dynamic

environments. Combining the spatial and the temporal variations is reasonable next step in further

investigation of biological information processing by single cell organisms.

The basic biology of Physarum is reviewed in [12, 13]. Its body consists of a network of veins

which rearranges when migrating. This network plays a key role for transport of body mass and for

circulation of nutrients and signals through the body. The shape of the network changes in response

to variations of external conditions. For instance, Physarum traces the shortest connection path

through a thick tube between two distant food sources [1]. For the case of three food sources placed

at the vertices of equilateral triangle, the tube network connects all of three food sources through

various kinds of network shape [5, 7]. The network of minimum total length named ”Steiner Tree”

being one of the potential solutions. Physarum can find a smart network solution under the spatially

inhomogeneous fields [14, 15].

In this report, we study the computational ability of Physarum polycephalum when confronted

with a problem with both spatio-temporally varying conditions. Here we consider an experimental

setup which is as simple as possible. We place three food sources on the vertices of equilateral

triangle. To involve the temporal variations, we apply light illumination to a half part of the triangle,

and alternately switch illumination from one half to the other. This light is toxic and induces the

organism to avoid it [4]. Under such conditions, the plasmodium should gather at the food sources

in order to absorb nutrients but, on the other hand, it should also aim to maintain a large body as a

whole. In general, this organism is not likely to separate into subsystems. Understanding the strategy

for trade-off between gathering food and the maintaining unity is not trivial. What we want to know

here is what the organism’s strategy is when faced with a dynamic problem and how it solves this

problem.

Since behaviors of organism are output from information processing, we may collect a hint at the

information processing perfomed by the organism. In Physarum, the behavior is reflected by the

visible shape of tube network. In understanding the mechanisms of Physarum we are helped by a

well-established mathematical model for ethological dynamics that has already been proposed for

either spatial variations [15, 16] or temporal variations [11]. Based on the model, we proposed a

possible mechanism analyzed by means of dynamical systems theory.

2. Experimental study

2.1 Materials and methods
The plasmodium of Physarum polycepharum, which regenerated from the sclerotia and starved for 12

hr in the dark, were served for the experiment. A plastic film was placed onto a 1 % agar gel, leaving

Fig. 1. Network shape just after the presentation of three FSs. The diameter
of circle was 3 cm.
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a circular area (diameter = 3 cm) of the gel uncovered. A frontal piece (40 mg) of the plasmodium

was cut from a large plasmodium (20×30 cm2) and placed in the circular open area. This preparation

was placed in the dark for a few hours until the plasmodium spread entirely over the open area. The

plastic film was removed carefully, ensuring that the specimen was not damaged. Three equal-sized

agar blocks (1% agar in water), which contained glucose (1.8 mg/ml) and Casamino acid (2.0 mg/ml),

were then presented at the vertices of an equilateral triangle as shown in Fig. 1. The agar block was

food source or FS in short hereafter.

In order to introduce spatio-temporal variations, soon after the presentation of food blocks we

illuminated the toxic light on each half of the specimen in turn for a period of P = 30, 60 and 90 min.

Therefore, each half was illuminated for a period of time P and then kept in the dark for a period of

time P , and the cycle was repeated. So one cycle of illumination took a period of time 2P . Figure 2

illustrates this process, showing the patterns of illumination for each half of the sample, which were

switched from one half to the other after each time period P . White region in Fig. 2 corresponds

illuminated field. The light pattern was produced using a laptop computer and projected onto the

sample from the projector (type NP2150, NEC (Nippon Electric Company), Tokyo, Japan). The light

was reflected from the mirror surface placed above the specimen. The strength of illumination is 21000

lx. The strong illumination gives rise to the intracellular production of reactive oxygen species which

are avoided by the organism. At the beginning of the illumination, the right half was illuminated

before the left half.

Six hours after the illumination, the resulting network shapes were observed. Network shape that

connected the FSs was characterized by topology of connectivity through relatively thick tubes only

as many thin tubes were neglected. The point to characterize the network shape was which FSs were

connected each other through thick tubes.

2.2 Results

After we started the illumination in any periods of switching, the organism moved toward the FSs,

and tubes gradually grew thick or diminished. Figure 3 shows several examples of the network shape

arising in the experiment. The shape arising depended on the period of switching illumination. For

P = 30 min., all of three FSs remained connected through a few thick tubes, as shown in Figs. 3a and

b. For P = 60 min., the pattern sometimes lacked a direct connection between the top FS and the

right bottom FS (Fig. 3c) although it was also sometimes observed that three FSs were connected

similarly to that in P = 30 min. For P = 90 min., the network that connected all of three FSs was

no longer observed (Fig. 3d and e). The network shapes showed two types: the two bottoms of FS

were connected but the top FS was isolated (Fig. 3d), and all of three were isolated (Fig. 3e).

The final patterns can be better understood by considering the dynamics in the 60 minute case.

Figure 4 shows a time course of network shape for P = 60 min. Just after the light illumination, the

(a) (b)

Region R Region L

Fig. 2. Illumination patterns on the slime mold. White part corresponds
illuminated region. (a) region R: illumination on right hand side, (b) region L:
illumination on right hand side. Light intensity of white area is about 21000
lx. Region R was illuminated first, and region R and L were switched in a
constant period P (The entire cycle of alternate illumination was 2P ). Dotted
circle corresponds initial boundary of slime mold.
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available circular space was filled with the plasmodium (Fig. 4a). The organism gathered at all FSs

and left some tubes to maintain connections among the FSs one hour after the illumination (Fig. 4b).

Finally there existed only two thick tubes that connected the top FS to the left bottom FS, and the

left bottom FS and to the right bottom FS.

Figure 5 shows statistics of final network patterns under each condition (P = 30 min, 60 min,

90 min), which were classified into four groups by focusing on relatively thick tubes only. In the first

group in Fig. 5, the network connected all three FSs, and the density of network edges was similar in

the two right and left halves. In the second group, the network connected all of three FSs but the

FSs 1 and 3 were not directly connected in region R. Importantly, region R is the half which was

illuminated first and then lacked a direct connection. In general, density of network edges was always

lower in region R. Thus for these shapes the left-right symmetry was lost in the network shape. In the

third group in Fig. 5, the network connected two FSs 2 and 3 only. The FS 1 was isolated. No clear

difference of edge density was observed between the two halves. As a result the left-right symmetry

(a) (b)

(c) (d)

(e)

Fig. 3. Several final pattern of network. The network pattern is illustrated
6 hours after FS presentation. Illuminated region was changed every (a)(b) 30
min, (c) 60 min, (d)(e) 90 min.

(a) (b) (c)

Fig. 4. Time course of network shape in P = 60 min. (a) 0 hour, (b) 1 hour,
(c) 2 hours after starting the light illumination.
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was recovered. The forth group was the network shape that did not connect any FSs. All of three

FSs were isolated.

As described above, total length of thick-tube network tended to get shorter as P increased although

total exposure time of light illumination was the same in every P . Another nontrivial result was that

left-right symmetry was lost only in P = 60 min., while it was held for the other periods P = 30, 90

min. These results mean that the organism was able to react to combination of spacial and temporal

variations of surroundings. In the next section, we consider a mathematical model for the observed

behaviors which helps us understand these observations.

3. Mathematical model
Actual processes of cell dynamics of Physarum are too complex to treat in a straightforward manner.

Here we neglect the complexity of aspects such as viscoelastic characters and biochemical reactions.

Let us begin with a simple model for adaptive network of tube in Physarum, previously proposed in

the references [14–16]. The main concept of this model is that tube network is modeled by network

of water pipes, in which thickness of pipe varies in response to flow through the pipe itself. If the

flow is large enough, pipe becomes thicker, whereas if flow is small, pipe thins and collapses. We

suppose that the initial condition of the network is a regular triangle in which vertices and edges

correspond positions of FSs and tubes, respectively. We then run the model to try to reproduce the

basic tendency of the final pattern with respect to the period P .

3.1 Standard Physarum model
First we briefly introduce background of the already proposed model. Suppose that the pressure at

nodes i and j are pi and pj , respectively. The variable Qij denotes the flux through a tube, which is

connecting nodes i and j, of length lij and radius rij for a cylindrical hard pipe. Assuming that flow

is laminar and follows the Hagen-Poiseuille equation, the flux through the tube is then given by

Qij =
Dij(pi − pj)

lij
. (1)

The conductance Dij is translated to tube thickness rij by the equation, Dij = πr4ij/8η, where η is

viscosity of fluid. The conductivity Dij evolves according to the following equation,

dDij

dt
= f(|Qij |)− cijDij . (2)

The first term in right-hand side represents adaptive change in tube conductance, which is given

by f(Qij) = |Qij |γ/(1 + |Qij |γ), where γ is a model parameter. The second term in right-hand side

describes constriction of the tube with decay rate cij > 0. It means that tubes will gradually disappear

if Qij is zero (no flow). That’s a summary of the previous model that is a basis for our model. Please

see the references for the details [15, 16].

0

1

2 3

Group2 Group3 Group4Group1

10 0 0 0

37 0 0

00 4 2

P=30min

P=60min

P=90min

Fig. 5. Statistics of network shape 6 hours after starting illumination. Num-
bers in the table means numbers of specimen that showed the shape. Number of
repeats were 10 for P = 30, 60 min or 6 forP = 90 min. The circles correspond
FSs, and the solid edges correspond connection between FSs.
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3.2 Model extension for temporal variations
Figure 6 shows a schematic illustration of our model including temporal dynamics. Because of the

photophobic nature of this organism, an edge in illuminated region tends to disappear quickly, there-

fore cij(t) in illuminated region is larger than that in the dark region. When the edge is partially

illuminated, the decay rate cij(t) should take an intermediate value between the values under entirely

illuminated conditions and under dark conditions. cij(t) is a time-periodic step function with a period

2P .

According to the conventional consideration in the previous model, pi(t) is periodic with period

T , but the period is much shorter than P . This assumption is still reasonable in our current model,

because thickness of the slime mold periodically oscillates in the period of 1 to 2 min., and the switching

period of illumination is at shortest 30 min. For simplicity, we assume that p1(t) = p2(t + T/3) =

p3(t + 2T/3). Therefore pi averaged over the time interval [t, t + T ] gives an approximation for the

original system Eq. (2), and the equations

Qij = αDij , (3)

α =
1

T

∫ t0+T

t0

|pi − pj |
lij

dt, (4)

are holds, where α is constant, although pi and pj are time-dependent. The averaging method allows

us to ignore the time variation of pressure. This is a point.

For simplicity, we replace D12, D13 and D23 by D1, D2, D3, respectively. Equation (2) can be

rewritten as the following equation,

dDi

dt
= F (Di)− ciDi, (5)

where F (Di) = Dγ
i /(β +Dγ

i ) and β = α−γ in general. We assume β = 0.03, γ = 3.0 as a typical set

of value in this paper. c1 c2, and c3 represent c12, c13 and c23, respectively, and can be written as the

following,

(c1, c2, c3) =

{
(1, 2, 1.5) (2nP ≤ t < (2n+ 1)P )

(2, 1, 1.5) ((2n+ 1)P ≤ t < (2n+ 2)P ),
(6)

where n is non-negative integer, as shown in Fig. 6. According to the previous papers [4, 15], values of

ci is to be approximately in a range of 1.2 to 2.2 for the light intensity of 20000 to 80000 lx when it is

1 for dark condition. Here we set c = 1 for the dark and c = 2 for the entire illumination. The model

results do not however critically depend on this parameter value. When the edge 1 with c1 is under

illumination for a period P and under dark for the next period P , the edge 2 with c2 is under dark

first for P and under illumination for the next P . Thus the c values 1 and 2 are alternate between c1
and c2. For the edge 3, the c3 value is constant at c3 = 1.5 because just half length of tube is always

illuminated: only half length is illuminated for a period P , and another half is illuminated for the

next P .

C3=1.5

C2=2C1=1

(a) (b)

C3=1.5

C1=2 C2=1

Fig. 6. Decay rate c for each edge. A domain bounded by dashed lines
represents illuminated area. (a) 2nP ≤ t < (2n + 1)P , (b) (2n + 1)P ≤ t <
(2n+ 2)P .
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3.3 Analysis of the temporally constant conditions
To understand the behavior of Eq. (5), we first consider the following equation,

dD

dt
= F (D)− cD, (7)

where time dependency of environmental variations is to be neglected.

Figure 7 shows time derivative of D for c = 1, 1.5, 2. It is clear that D = 0 is a stable fixed point

for all cases. Equation (7) can have two more fixed points, an unstable fixed point Du(c) and a stable

fixed point Ds(c), at c = 1 and 1.5. When these fixed points exist, the asymptotic behavior of D(t)

can be described in terms of the initial conditions D(0). D(t) converges to 0 if D(0) < Du(c), while

D(t) converges to Ds(c) if D(0) > Du(c). The pair of unstable and stable fixed points coalesces and

disappears when c exceeds a critical value (called a saddle-node bifurcation). Thus D = 0 is the only

fixed point at c = 2, and it means that D(t) gradually approaches 0 for any initial condition D(0).

3.4 Dynamical behavior for the spatio-temporally variations of external condi-

tions
Based on the above analysis for temporally constant conditions, we now involve the switching of

illumination. It is clear that the asymptotic behavior of D3(t) depends on its initial condition. The

dynamics of D3(t) does not depend on P , because c3 is constant at 1.5. Thus it shows the same

dynamics as D(t) at c = 1.5. Dynamics of D1 and D2 are more complex. For simplicity we restrict

the initial conditions to D1(0) = D2(0) = D3(0) = D0 > 0 after this. For P is sufficiently small,

D1(t) and D2(t) are in a neighborhood of D3(t) for t > 0. Thus, eventually, D1(t) and D2(t) oscillate

around Ds(1.5) if D0 > Du(1.5), and converge to 0 if D0 < Du(1.5).

For sufficiently large P , D1(t) and D2(t) converge to 0 for any D0. This can be explained as

follows. For D0 > 0, dD/dt is always negative if c = 2, thus there exists t1 < 2P and t2 < P ,

such that D1(t1), D2(t2) < Du(1) when P is sufficiently large. As shown in Fig. 7, once D1(t) and

D2(t) fall below Du(1), the time derivation dD1/dt, dD2/dt never become positive, even when the

illumination is switched off. The tube formation has fallen below the unstable threshold and is unable

to recover. Thus D1(t) and D2(t) converge to 0.

-1.6

-1.4

-1.2
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-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2

dD
/d

t

D

Not illuminated (c=1)
Partially illuminated(c=1.5)

Illuminated(c=2)

Du(1) Ds(1)
Du(1.5)

Ds(1.5)

Fig. 7. Time derivative of D in Eq. (7). Solid line represents dD/dt when the
edge is in a dark region (c = 1.0). Dashed line represents dD/dt when the edge
is partially illuminated (c = 1.5). Dotted line represents dD/dt in illuminated
region (c = 2.0). Open circle and black circle represent unstable equilibrium
and stable equilibrium, respectively. Du(1) and Ds(1) are unstable fixed point
and stable fixed point at c = 1. Du(1.5) and Ds(1.5) are unstable fixed point
and stable fixed point at c = 1.5.
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While the asymptotic behaviors of Di(t) at extremely large P and extremely small P can be

understood by analysis of the temporally constant condition as Eq. (7) it is less clear what happens

if P has an intermediate. Figure 8 shows time series of D1, D2, D3 for several P . As shown the

numerical calculation and the result of our experiment. Figure 3 shows same tendency, D1(t), D2(t),

D3(t) remains at small P , only D2(t) goes to 0 at middle P , and D1(t) and D2(t) goes 0 at large P .

These results are dependent on initial conditions and it is also possible that D2(t) remains positive

for intermediate P , as occurred in some experiments. In general, however the greater the frequency

the less paths between the food sources.

3.5 Analysis of discrete dynamical system

To understand the dynamical behavior of Eq. (5) for the intermediate P , we transfer the continuous

system into a discrete dynamical system. Because of time periodicity of ci(t), D1((2n+2)P ) is uniquely

determined by D1(2nP ) where n is non-negative integer. Thus, a map M : D1(2nP ) �→ D1((2n+2)P )

can be determined. Figure 9 shows the map M , i.e., D1((2n+2)P ) = M(D1(2nP )), at several P . For

P < 2.913, the map M has a positive unstable fixed point D̄u and a positive stable fixed point D̄s. At

P = 2.913, the two fixed points collide into one a neutral stable fixed point D̄n, and no positive fixed

points remain for P > 2.913, i.e., a saddle-node bifurcation occurs. Note that a positive fixed point of

map M does not correspond to an equilibrium of the Eq. (5), and they correspond to periodic orbits

in the original system.

Asymptotic behavior of D1(t) can now be explained. For P < 2.913, D1(2nP ) approaches D̄s.

Asymptotic behavior of D2(t) can be also understood by the M , because M represents not only

D1(2nP ) �→ D1((2n + 2)P ) but also D2((2n + 1)P ) �→ D2((2n + 3)P ). Thus if D1(0) = D2(P ),

D1(2nP ) = D2((2n+ 1)P ) holds at an arbitrary n ≥ 0. If D1(0) = D2(0), D1(0) > D2(P ) generally,

because as shown in Fig. 7, dD2(t)/dt < 0 for 0 < t < P . The asymptotic behavior of D1(t), D2(t)
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Fig. 8. A map for evolution of tube conductance D1, D2, D3 in Eq. (5). (a)
P = 1.1. (b) P = 2.2 (c) P = 3.3.
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with given P are as follows: D1(t) and D2(t) do not go to 0 when D̄u < D2(P ) < D1(0) , only D2(t)

goes to 0 when D2(P ) < D̄u < D1(0), and bothD1(t) and D2(t) goes to 0 when D2(P ) < D1(P ) < D̄u

or no positive fixed points exist. Because of D1(0) > D2(P ), it is never happened that only D1(t)

goes to 0 and D2(t) does not goes to 0. Therefore, it means that D2(t) disappears easier than D1(t)

does, and can be good explanation of asymmetric result of our experimental result as Fig. 5

As shown in Fig. 9, asymptotic behavior of Di(t) depends on P and D0. Figure 10 shows some

typical examples of transitions as P increases, and it shows what pattern comes next to what depends

on a value of D0. A case shown in Fig. 10a happens when D0 is much larger than Ds, On the other

hand, another case shown in Fig. 10c corresponds to the case when D0 has very small value, and

tubes never grow even in a dark area. Therefore those intial conditions, shown in Figs. 10a and c, are

not adequate for our experimental setting.

From the above discussion, D0 must have an intermediate value, and D0 = 0.4, for example, is

one of the appropriate initial condition. It can be seen that using D0 = 0.4 as the initial condition

is not only appropriate but also good to mimic our experimental results as shown in Fig.10b. We

thus explain our experimental result by using a mathematical model which has nonlinearity of tube

developing law. The model showed the saddle-node bifurcation when we changed the illumination

period P , which together with a dependency on initial conditions explains the experimental outcome.

4. Discussion
The type of structure created by Physarum depends strongly on the frequency of the lighting condi-

tions. Long periods of lighting leads to a separation of the organism, while shorter periods produce
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Fig. 9. D((2n+ 2)P ) = M(D(2nP )) for several P . All figures are obtained
in the numerical calculation. (a) P = 1.1, (b) P = 2.2, (c) P = 2.913 and
(d) P = 3.3. If we set D1(0) = D2(0) = 0.4 as same initial conditions in
Fig. 8, D2(P ) and magnitude relations are as follows: (a) D2(P ) = 0.269,
D̄u < D2(P ) < D1(0), (b) D2(P ) = 0.0746, D2(P ) < D̄u < D1(0), (c)
D2(P ) = 0.0188, D2(P ) < D̄n < D1(0), (d) D2(P ) = 0.00867, no positive
fixed points.
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P

saddle-node bifurcation point

(a)

(b)

(c)

0 Pc

Fig. 10. Schematic illustration of transition of final patterns as P increases.
(a) D0 is very large so that D2(2Pc) > D̄n. (b) D0 has an intermediate value
including D0 = 0.4. (c) D0 is lower than any D̄u and D̄n. D0 is also lower
than Du(1.5). Pc represents a saddle-node bifurcation point, and Pc = 2.913
at β = 0.03 and γ = 3.0.

a highly connected structure. For 90 minute period of illumination, the half illuminated tube still

spans the illuminated region and the dark region. From a physiological viewpoint, the tube can be

used for rapid escape from the illuminated region to the dark region if the condition of either regions

gets worse.

For shorter periods of illumination we see a full connection preserved. For P = 60 min. a difference

can be observed between right side and left side as shown in Fig. 3c. This means final network depends

on which side was illuminated first. As tubes were quite thin in initial stage of the experiment, it took

relatively short time until they died out in the earlier illuminated region as show in Fig. 5. However,

some tubes in the later illuminated region can survive, because these tubes became thick enough in the

dark to survive for 60 min. As a consequence, the final connection of all FSs is not likely to collapse.

This explanation is supported by our mathematical model. Tubes have to fall below a critical level

during a period of illumination in order to be removed.

The changes in structure is evidence of a tradeoff between the need to stay connected in the need

to avoid light. Similar tradeoffs have been observed in the migration of Physarum to food and away

from light [4, 8, 14]. It is notable that the primitive unicellular organism, which has no nervous

system, can adjust its foraging structure in response to temporal variations in the environment. The

organism manages to select the strategy for risk reduction using only local information. Again, the

non-linearity in the model combined with changes in initial conditions are sufficient to explain this

tradeoff. It may be said that Physarum study is an promising guide way to evolutionary origin of

information processing in higher animals.
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