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a b s t r a c t

Several empirical studies have shown that the animal group size distribution of many species can be

well fit by power laws with exponential truncation. A striking empirical result due to Niwa is that the

exponent in these power laws is one and the truncation is determined by the average group size

experienced by an individual. This distribution is known as the logarithmic distribution. In this paper

we provide first principles derivation of the logarithmic distribution and other truncated power laws

using a site-based merge and split framework. In particular, we investigate two such models. Firstly, we

look at a model in which groups merge whenever they meet but split with a constant probability per

time step. This generates a distribution similar, but not identical to the logarithmic distribution.

Secondly, we propose a model, based on preferential attachment, that produces the logarithmic

distribution exactly. Our derivation helps explain why logarithmic distributions are so widely observed

in nature. The derivation also allows us to link splitting and joining behavior to the exponent and

truncation parameters in power laws.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Animals are often found in groups. Fish school, birds flocks and
insects swarms are ubiquitous examples. Being in groups benefits
individuals in several ways. Amongst other things, it can enhance
their foraging efficiency, reduce their chance of being captured by
a predator, and help to conserve energy (Foster and Treherne,
1981; Parrish, 1989; Barbraud and Weimerskirch, 2001; Sumpter,
2010). However, animal groups do not always have a typical size,
and group sizes often have large variation both among and within
species (Gerard et al., 2002; Bonabeau et al., 1999). This property
brings up several interesting questions: How are animal group
sizes distributed? Are there any common patterns for these
distributions? How do different distributions form?

A wide range of models has been suggested for distribution of
animal group sizes. The earliest such models proposed a single
stable group size, around which the size of the groups may
fluctuate (Sibly, 1983; Beauchamp and Fernández-Juricic, 2005;
Clark and Mangel, 1986; Mottley and Giraldeau, 2000). For
example, Caraco proposed the Poisson and negative binomial
distributions as one or, respectively, two parameter models of
group size distributions (Caraco et al., 1980). Such distributions
have a single peak at a group size somewhat larger than one and a
narrow variation around this maximum.
ll rights reserved.
Observed group size distributions of many animal species do
not follow such Poisson or negative binomial distributions
(Gerard et al., 2002; Bonabeau et al., 1999). Most importantly,
the variation in group sizes is usually much wider than predicted
by these distributions. The geometric distribution is a special case
of the negative binomial, obtained by maximizing the variance. In
his influential review, Okubo predicted that group sizes should
follow a geometric distribution and presented a number of
empirical cases where this relationship held (Okubo, 1986).
However, even the geometric distribution fails to capture the
large variation in group sizes observed for many species. In
particular, several studies have shown that many species follow
power law distributions over a number of orders of magnitude
(Bonabeau and Dagorn, 1995; Bonabeau et al., 1999; Sjöberg et al.,
2000).

A natural question emerges about how these distributions
arise from interactions between individual animals. Bonabeau
and Dagorn proposed a model for animal grouping based on a
single assumption: if groups meet they always merge to form a
larger group (Bonabeau and Dagorn, 1995; Bonabeau et al., 1999).
Their model predicts power law distributions of group sizes,
which again appeared consistent with some observational data
of fish and mammals. However, in their model individuals need to
be continuously added in order to get a power law. Furthermore,
unless they add spatial structure to the model the power law
exponent is always �2. Even with spatial structure, where such
models give power laws with exponents between �4/3 and �3/2
(Takayasu et al., 1988), the dynamics of their model are difficult
to motivate from a biological perspective. Although they suggest
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dx.doi.org/10.1016/j.jtbi.2011.04.031
mailto:qi@math.uu.se
dx.doi.org/10.1016/j.jtbi.2011.04.031


Q. Ma et al. / Journal of Theoretical Biology 283 (2011) 35–4336
that power laws should be truncated by faster decreasing func-
tions such as an exponential function, no natural explanation on
the cutoff is given. In particular, Bonabeau and Dagorn did not
provide a method for relating their model assumptions to the
point in the distribution at which the cutoff should occur.

Niwa (2003) proposed a site-based model, which can be
described as follows. Assume that space is divided into s sites
on which a total of F individuals are initially randomly distrib-
uted. Every site is either empty or occupied by one group. At each
discrete time step, (1) each group with size larger than 1 has a
probability p of splitting into a pair of groups. When a group
splits, the size of the two components is chosen uniformly at
random; (2) all groups move to a new randomly chosen site. If
two groups move to a same site, they merge to a new group with
a size equal to the sum of the two groups. The same rule holds if
three or more groups meet.

Niwa predicted the following stable group size distribution for
his model:

WðnÞ � n�1exp �
n

NP
1�
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n
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� �
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1
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where W(n) is the probability density function of group of sizes.
Niwa noted that the final term ð1�expð�n=NPÞÞ makes little
difference to the quality of data fitting compared to a simpler
distribution

WðnÞ � n�1exp �
n

NP

� �
ð2Þ

Here, if n is considered to be a continuous variable, then the single
parameter NP denotes the expected size of groups in which an
arbitrary individual engages, i.e.

NP ¼

R
n2WðnÞ dnR
nWðnÞ dn

ð3Þ

This is a spectacularly simple yet powerful result. Simply by
measuring the average group size experienced by an individual,
Niwa is able to recreate the whole distribution of group sizes.
Furthermore, Niwa showed that this distribution fits well with
data of several fish species, and to a lesser degree that of several
mammal species. More recently, Griesser et al. (in submission)
have shown that it fits data for house sparrows too.

There are, however, a number of limitations with Niwa’s
derivation of the above distribution. Firstly, he used simulation
results to establish how fluctuations in group size change as a
function of group size itself. This relationship is then used in a
stochastic differential equation approximation of the site-based
model. However, since this initial result is obtained by simulation,
the further results based on the stochastic differential equation
lack a rigorous foundation. Secondly, given the stochastic differ-
ential equation, the derivation of the potential function does not
appear correct. Specifically, Eqs. (8), (9) and (11) in Niwa’s paper
do not appear to follow. Thirdly, Niwa states self-consistency of
the model by calculating NP in continuous sense, while it is more
natural to use a discrete distribution. Animals are discrete
entities. The discrete calculation gives different results from the
continuous one and Eq. (3) fails to hold.

Given the excellence of Niwa’s distribution in explaining
observations and its one-parameter simplicity, it is important
that we have a clear derivation linking individual behavior of
animals to the predicted group size distribution. In this paper we
give several such derivations and at the same time address the
above issues in Niwa’s original paper.

To make this derivation we use a discrete analog of a general
continuous split–merge model, also called coagulation–fragmentation
processes (CFP), discussed by Gueron and Levin (1995). They study
the following general evolution equation for the density distribution
of groups:

@~f ðxÞ

@t
¼�pðxÞ~f ðxÞ�

Z 1
0

~f ðxÞ~f ðzÞcðx,zÞ dz

þ
1

2

Z x
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~f ðyÞ~f ðx�yÞcðy,x�yÞ dyþ

Z 1
x

~f ðyÞjðy,xÞ dy ð4Þ

where ~f ðxÞ ¼ f ðx,tÞ denotes number of groups of size x, p(x) is the rate
of split for groups of size x, cðx,yÞ ¼cðy,xÞ is a symmetric function
denotes merge rate of group of size x and group of size y. The first two
terms in (4) account for decrease caused by split of groups of size x

and groups of size x merge with another group. jðx,yÞ ¼jðx,x�yÞ

denotes the rate of a group of size x splits to two groups whose size
are, respectively, y and x�y. The last two terms in (4) account for
increment caused by merge of smaller groups to become an x-sized
group, and larger groups splitting to become size x.

We derive such an evolution equation for a slightly different
version of Niwa’s merge and split site-based model and find that
it gives a distribution similar to but not identical to that proposed
by Niwa. We further discuss several other models which produce
a discrete version of Niwa’s distribution.
2. The logarithmic distribution

We begin by re-stating equation (2) as a discrete distribution
and discuss some of its properties. It is more natural to use a
discrete distribution because animal groups consist of integer
number of individuals. Eq. (2) is a truncated power law with
exponent �1 and an exponential tail from a cutoff at NP. In
discrete form this can be written as

WðnÞ ¼
Kan

n
ð5Þ

which is now the probability that a group is of size n. The
parameter K ¼�1=lnð1�aÞ is a normalization constant and a is a
positive constant smaller than one. This distribution is known as
logarithmic distribution, originally described by Fisher for abun-
dance of different species in a random sample of an animal
population (Fisher et al., 1943). Fig. 1a and b shows a typical
example of this distribution on linear and log–log scales,
respectively.

For animal groups, a key property of the logarithmic distribu-
tion is its relationship to the average group size experienced by an
individual, denoted as NP . Following Niwa, we define

NP ¼

P1
n ¼ 1 n2WðnÞP1
n ¼ 1 nWðnÞ

¼

P1
n ¼ 1 nanP1
n ¼ 1 an

¼
1

1�a
ð6Þ

Note that the mean group size E(n)¼Ka/(1�a) is always less than
NP. Thus the size of the group in which a (uniformly) randomly
chosen individual is likely to be larger than the size of a randomly
chosen group (see Fig. 1a and b). Eq. (6) further implies that the
group size experienced by an individual is geometrically distrib-
uted. In other words, the size-biased logarithmic distribution
equals a geometric distribution with parameter (1�a) (Patil and
Rao, 1978) .

Furthermore, by Eq. (6) we know that, unlike in Eq. (2),

aaexpð�1=NPÞ

although when NP is large, a� expð�1=NPÞ. In any case, the
parameters in Eq. (5) can be expressed simply in terms of average
group size experienced by a random individual, i.e.

a¼ 1�
1

NP
and K ¼

1

lnðNPÞ
ð7Þ
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Fig. 1. (a) Histogram of group size distribution in the form of Eq. (8), with NP set equal to that estimated from the simulation in (c), i.e. NP¼11. (b) Same data as in (a),

plotted in log–log scale. (c) Histogram of the stable group size distribution by simulation of the merge and split model. Total population F¼ 10 000, splitting rate p¼0.5,

moving rate q¼1, the total number of sites s¼10 000, simulation time step T¼400 000. Every group has size 10 for the initial state. (d) Same data as in (c), plotted in

log–log scale.
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These relationships make fitting of this distribution to data
straightforward. In order to perform such a fitting one need only
estimate NP directly from data and then compare the overall fit of

WðnÞ ¼
1

lnðNPÞ

ð1�1=NPÞ
n

n
ð8Þ

to the empirical distribution (Griesser et al., in submission).
3. Merge and split model

We now investigate a simpler version of the site-based model
proposed by Niwa for how groups split and merge (Niwa, 2003,
2004). Assume a system with fixed total population F and s sites.
Each site is either empty or occupied by one group. In time
interval t, each group with size larger than one splits to two
groups with probability pt, i.e. p is the instantaneous rate of
splitting. The two component groups both move to randomly
chosen empty sites. With rate q, each group moves to a randomly
chosen site. If this new site is occupied, the moving group
members are added to the group at the new site.

We ran computer simulations of the above model using a
variation of Gillespie algorithm (Gillespie, 1977). The stable group
size distribution for one such simulation is shown in Fig. 1c and d.
Repeated runs of the simulation suggested that the group size
distribution of this model was independent of initial condition.
For these parameter values, the distribution from the simulation
was similar to that of Niwa’s distribution. Estimating NP from the
simulation and substituting this into Eq. (8) gives a distribution
which, at least qualitatively, looks like the stable group size
distribution (i.e. compare Fig. 1a and c).

In order to investigate the nature of the relationship between
logarithmic distribution and the merge & split model, we now
derive deterministic evolution equations for our stochastic merge
and split model. The correspondence between stochastic coagula-
tion–fragmentation models and such deterministic models are
studied by Gueron (1998) and Durrett et al. (1999). Let f(n,t) be
the number of groups with size n at time t, ZðtÞ ¼

P1
n ¼ 1 f ðn,tÞ

denotes the total number of groups, W(n,t) is the fraction of
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groups with size n, therefore f ðn,tÞ ¼ ZðtÞWðn,tÞ. For large random
systems, W can be treated as the density distribution of group
size. Time evolution of f(n,t) is the result of the balance between
increase and decrease of the number of groups in size n caused by
both splitting and merging. This can be expressed by four terms:
1.
 Increment by the merge of groups with size i and n� i. A group
of size i (ion) moves to a site occupied by a group of size n�i,
they merge to an n-sized group. This event happens at rate
f ði,tÞqf ðn�i,tÞ=s. Groups whose size is less than n all have the
chance to merge to an n-sized group, so the rate at which two
groups merge to become a group of size n is

Xn�1

i ¼ 1

q

s
f ði,tÞf ðn�i,tÞ
2.
 Increment from splitting of groups whose size is larger than n.
The rate that a group of size n created by splitting of group
with size i (i4n) is 2f ði,tÞp=ði�1Þ. Adding up the rate for all
groups larger than n, we get

X1
i ¼ nþ1

2f ði,tÞp

i�1
3.
 Decrease by a group of size n splitting to two smaller
components, the rate of this event is pf(n,t).
4.
 Decrease by groups of size n merging with another group,
which can happen in three ways: a group of size n moves to a
site occupied by a group whose size is not n, the corresponding
rate of this event is f ðn,tÞqðZðtÞ�f ðn,tÞÞ=s; a group of size n

moves to a site occupied by an n-sized group, this will lead to
two groups’ lost for n-sized groups, therefore decreases f(n,t)
by 2qf ðn,tÞðf ðn,tÞ�1Þ=s; a group with size other than n moves
and lands on a site occupied by an n-sized group, occurs at rate
qðZðtÞ�f ðn,tÞÞf ðn,tÞ=s. Adding up these three possibilities gives
a decrease in f(n,t) of

�
2q

s
f ðn,tÞðZðtÞ�1Þ

Combining the above four terms, we can obtain the evolution
equation for f(n,t), i.e.:

f ðn,tþtÞ�f ðn,tÞ ¼
Xn�1

i ¼ 1

qf ði,tÞ
f ðn�i,tÞ

s
tþ

X1
i ¼ nþ1

2pf ði,tÞ

i�1
t

�pf ðn,tÞt�2
q

s
f ðn,tÞðZðtÞ�1Þt ð9Þ

for n¼2, 3, 4, y. Since groups with only one individual can
neither be formed by merging nor can they split to smaller
groups, the evolution of f(1) is determined by two terms.
Specifically,

f ð1,tþtÞ�f ð1,tÞ ¼
X1
i ¼ 2

2pf ði,tÞ

i�1
t�2q

s
f ð1,tÞðZðtÞ�1Þt ð10Þ

gives the evolution of groups of size one. Finally,

ZðtþtÞ�ZðtÞ ¼ pðZðtÞ�f ð1,tÞÞt�qZðtÞ
ZðtÞ�1

s
t ð11Þ

gives the mean field evolution of the total group number Z(t). We
note that, interpreting our model in terms of Gueron and Levin’s
(1995) evolution equation, i.e. Eq. (4), the merging rate of groups
of size i and n� i merge to a group of size n is cði,n�iÞ ¼ 2q=s, and
the splitting rate of a group of size n splitting to groups of size i

and n� i is jðn,iÞ ¼ 2p=ðn�1Þ.
We now assume that the above equations have a unique stable
group size distribution, namely f(n,t)¼ f(n) and cov(f(n),f(m))¼0
when t-1. As a result, Z ¼

P1
n ¼ 1 f ðnÞ is constant at steady state.

We also assume that the system is large enough so that Z � Z�1
and since f(1)¼ZW(1), we get at steady state

Z� ¼
ps

q
ð1�Wð1ÞÞ ð12Þ

Simulation results confirm that the total number of groups
converges to and then fluctuates around the theoretical value of
Zn for a wide range of p values (results not shown).

Treating the total group number Z¼Zn as constant allows us to
simplify the evolution equations. Substituting Zn into the right
hand side of Eqs. (9) and (10) and still assuming Z� � Z��1 gives
the following iteration expression for f(n) at stationary state,

f ð1Þ ¼
1

1�Wð1Þ

X1
i ¼ 2

f ðiÞ

i�1
ð13Þ

f ð2Þ ¼
ps

q
Wð1Þð1�Wð1ÞÞ2

Wð1Þþ2

5�2Wð1Þ

� �
ð14Þ

f ðnÞ ¼
ðn�1Þð3�Wð1Þ�Wð1Þ2Þ

ð3�2Wð1ÞÞðn�1Þþ2
f ðn�1Þ

þ
qðn�1Þ

ps½ð3�2Wð1ÞÞðn�1Þþ2�

Xn�2

i ¼ 1

f ðiÞðf ðn�iÞ�f ðn�1�iÞÞ ð15Þ

Note that f ð1Þ ¼ ZWð1Þ ¼ psð1�Wð1ÞÞWð1Þ=q. Thus f(n) (n¼2, 3,
y) can be expressed entirely in terms of W(1) and the model
parameters p, q and s.

Using the conservation condition
P1

n ¼ 1 nf ðnÞ ¼F, we can get a
numerical solution for W(1). Specifically, for any given set of
parameter values, we assume there is a unique W(1) which is
consistent with the conservation condition. In practice this
appears to hold. Thus given this value for W(1) we can then
calculate all f(n) accordingly. The calculated W(n)¼ f(n)/Z for
various values of p are shown in Fig. 2 and compared to
simulation outcomes. The numerical solution of the evolution
equation accurately reflects the simulation result over a wide
range of parameter values.

Eqs. (13)–(15) are not consistent with the logarithmic distri-
bution (i.e. Eq. (5)). If they were we should have the ratio

RðnÞ �
nWðnÞ

ðn�1ÞWðn�1Þ
¼ a ð16Þ

for some constant a. Such a solution simply does not hold for Eq.
(15). We thus reject the idea that the logarithmic distribution
represented by Eq. (5) is the exact solution to our merge and
split model.

To see the difference between the logarithmic distribution and
the real solution of our model, we compare R(n) to: (1) its value
estimated from the numerical solution of Eqs. (13)–(15); (2) that
arising from our discussion of logarithmic distribution, namely
a¼1�1/NP; and (3) to the value a¼ expð�1=NPÞ suggested by
Niwa and consistent with Eq. (2). Fig. 3 displays this difference for
various splitting rates. When p is small, R(n) from the simulation
is approximately constant and equal to both expð�1=NPÞ and
1�1/NP, except for at very small n. As groups split faster, R(n) is no
longer a constant, but still approaches a constant close to 1�1/NP

as n becomes larger. When p is large, intuitively there will be
more small groups, and NP is smaller. Here the approximation by
a constant becomes poorer and further away from 1�1/NP.
However, in this case expð�1=NPÞ is visibly larger than 1�1/NP

(Fig. 3d) and as a result expð�1=NPÞ gives a better match to R(n)
calculated from the simulations. This result goes some way to
explaining why Eq. (2) gave a good approximation of the group
size distribution produced by his site-based model (Niwa, 2003).



0 1 2 3 4 5 6
–15

–10

–5

0

log(Group size)

lo
g(

P
ro

ba
bi

lit
y)

0 1 2 3 4 5 6
–16

–14

–12

–10

–8

–6

–4

–2

0

log(Group size)

lo
g(

P
ro

ba
bi

lit
y)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
–14

–12

–10

–8

–6

–4

–2

0

log(Group size)

lo
g(

P
ro

ba
bi

lit
y)

0 0.5 1 1.5 2 2.5 3 3.5
–12

–10

–8

–6

–4

–2

0

log(Group size)

lo
g(

P
ro

ba
bi

lit
y)

Fig. 2. Comparison of simulated group size distribution (the crosses, with the total population F¼ 10 000, moving rate q¼1, the total number of sites s¼10 000,

simulation time step T¼400 000. Every group has size 10 for the initial state), evolution equation iteration (the solid line), and Niwa’s distribution as in Eq. (5) (the dashed

line). (a) p¼0.05, (b) p¼0.1, (c) p¼0.5, (d) p¼1.
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Given the importance of the parameter NP it would be useful to
have this quantity as a function of the site-based model’s para-
meters, namely p, q, F and s. Niwa (2004) gave an estimation of
NP as

NP ¼ 4c0
qF
sp

ð17Þ

where c0¼1.54 was estimated numerically from simulations.
Fig. 4a compares NP from the simulation with Eq. (17). We see
that this gives a good fit, based on one fitted parameter.

We can remove the need to fit a parameter such as c0 in this
relationship, by estimating NP directly from Eq. (8). We use
Z� ¼F=EðnÞ ¼ psð1�Wð1ÞÞ=q and substitute W(1)¼Ka along with
Eq. (7) to get an implicit expression

NP ¼
psðNP�1Þ2

psðNPÞlnNP�FqðlnNPÞ
2

ð18Þ

NP can then be estimated by solving this equation numerically.
Similarly, we can estimate the mean group size by solving a

numerically and then substituting into EðnÞ ¼ a=½ða�1Þlnð1�aÞ�.
The comparison of simulation and this solution for NP and that of
the mean group size for different splitting rates p are shown in
Fig. 4. Once again, the logarithmic distribution gives reasonably
good estimations for both NP and the mean group size. To
summarize, while Eq. (18) is more complicated than Eq. (17) it
has the advantage that it does not require an additional fitted
parameter.

To investigate how system parameters affect NP, we rewrite
Eq. (18) as

qF
sp
¼

NP

lnNP
�
ðNP�1Þ2

NPðlnNPÞ
2

ð19Þ

When NP is relatively large, i.e. NP�1�NP , the right side of the
above equation approximately equals to

GðNPÞ ¼
NP

lnNP
�

NP

ðlnNPÞ
2

ð20Þ

When NP is large, over any particular order of magnitude, NP

increases much faster than lnNP . Furthermore, although ðlnNPÞ
2

changes faster than lnNP , the second term in Eq. (20) is smaller
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than the first. As a result, G(NP) is roughly a linear function of NP

over reasonably small ranges. This property can be contrasted
with the result showed in Eq. (17), namely the truncation size of
the truncated power law distribution grows roughly linearly with
the total population when p, q and s are constant (Fig. 5). Our
results support this suggestion over small ranges. However, over
larger ranges, i.e. several orders of magnitude, G(NP) is not exactly
a linear function.
4. Other derivations of the logarithmic and related
distributions

There are alternative ways of deriving the logarithmic dis-
tribution (Eq. (5)) from first principles. The first point to note is
that the logarithmic distribution is a limiting case of the negative
binomial distribution (Fisher et al., 1943). If an observed variable
follows the negative binomial distribution

f ðk,pÞ ¼
ðkþn�1Þ!

ðk�1Þ!n!
pnð1�pÞk ð21Þ

then taking the limiting case k¼0, and assuming that group sizes
are never zero, we recover Eq. (5) with a¼p. The negative
binomial distribution has been used for modeling animal group
sizes (Caraco et al., 1980; Cohen, 1972), but in general the focus
has been on parameter values between k¼1, which corresponds
to the geometric distribution and k-1 which corresponds to the
Poisson distribution. Thus truncated power laws, of which the
logarithmic distribution is an example, can be put in the same
framework as other models of animal group size distributions.

While the merge–split model above is not exactly consistent
with logarithmic distribution, it is possible to ‘backwards engi-
neer’ such a merge and split model. Note that from Eq. (5) we
require

WðnÞ

Wðn�1Þ
¼

aðn�1Þ

n
ð22Þ

We now discuss an evolution equation which fulfills this
property.

The main idea in creating such a distribution is the use of
preferential attachment (Yule, 1925; Barabasi and Albert, 1999;
Newman, 2001a) with splitting. In particular, larger groups have
both higher merge and split rates. Assume as before a system
with conserved population F. We now insist that groups of size
1 decide to merge with other groups with rate q, and choose the
group to merge with by preferential attachment. So that the
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probability it joins a group of size n is

nf ðn,tÞ

F

Groups with size n41 never merge with other groups (except
those consisting of single individuals) but split with rate pn, i.e.
larger groups split more often. When these groups split they do so
into n groups of size 1, so that all individuals in the group are then
on their own. This mechanism gives

@f ðn,tÞ

@t
¼�q

nf ðn,tÞ

F
f ð1,tÞþq

ðn�1Þf ðn�1,tÞ

F
f ð1,tÞ�pnf ðn,tÞ ð23Þ

for n¼2, 3, y, and

@f ð1,tÞ

@t
¼�

X1
n ¼ 2

q
nf ðn,tÞ

F
f ð1,tÞ�2q

ðf ð1,tÞ�1Þ

F
f ð1,tÞþ

X1
n ¼ 2

pn2f ðn,tÞ

ð24Þ
At equilibrium, Eq. (23) equals to 0, we obtain

f ðnÞ

f ðn�1Þ
¼
ðn�1Þ

n

1

1þ
pF

qf ð1Þ

ð25Þ

Since f(n,t)¼Z(t)W(n,t), and in equilibrium Z ¼
P

f ðnÞ is constant,
the above equation is identical to Eq. (22) with

a¼
1

1þ
pF

qf ð1Þ

ð26Þ

This derivation gives a direct link between logarithmic distribu-
tion and a simple preferential attachment mechanism. Finally, we
identify

NP ¼ 1þ
qf ð1Þ

pF
ð27Þ

as the average group size experienced by an individual. Here
f(1) is a constant determined by system parameters. To show this,
we rewrite Eq. (23) in equilibrium as

nf ðnÞ ¼
qðn�1Þf ðn�1Þf ð1Þ

qf ð1ÞþqF
ð28Þ

Substituting the above equation into conservation condition
F¼

P1
n ¼ 1 nf ðnÞ ¼ f ð1Þþ

P1
n ¼ 2 nf ðnÞ, we can get

f ð1Þ2þ
pF
q

f ð1Þ�
p

q
F2
¼ 0 ð29Þ

which leads to

f ð1Þ ¼
F
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

q2
þ

4p

q

s
�

p

q

 !
ð30Þ

and

NP ¼
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ

q

p

s
ð31Þ

We thus find NP is specified only by the ratio of system
parameters p and q. As long as the total population F is large
enough, NP is independent of F. This property distinguishes our
preferential attachment model from the merge and split model in
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the previous section, where Eq. (19) shows a clear relationship
between population density and NP.

Logarithmic series can be categorized to a truncated power
law with power exponent �1. For more general truncated power
laws with other exponents, Gueron and Levin (1995) gave
detailed derivation in the CFP framework with some special forms
of merging and splitting functions. They solve Eq. (4) analytically
for three cases with the splitting and merging rate in the
following form: the rate that a group of size i and a group of size
n� i merge to become a group of size n is cði,n�iÞ ¼ aaðiÞaðn�iÞ,
the rate of a n-sized group splitting to a group of size i and n� i is
jðn,iÞ ¼ 2baðnÞ, where a(n) is some nonnegative function, a and b
are positive constants and a=bo2. The three cases they solved
are where (1) a(n)¼1; (2) a(n)¼n; (3) a(n)¼1/n. Via Laplace
transform, Gueron and Levin derive the solution of (4) as

f ðxÞ ¼ 2
b
a

1

aðnÞ

� �
expð�lnÞ ð32Þ

on the condition

lim
x-0

aðnÞ

n2
40

where l is a constant determined by population size. We can now
see that the logarithmic distribution is actually a specific example
of Eq. (32), where a(n)¼n. Gueron and Levin’s distribution gives a
very general and natural way of producing truncated power laws.
For example a(n)¼n2 gives group size distribution

f ðnÞ ¼
2b
a

1

n2
e�ln

The Gueron and Levin approach requires that the CFP is
reversible for existence and uniqueness of the stationary distribu-
tion. CFP reversibility results from their assumption that
cði,jÞ ¼ bðiÞbðjÞ and jði,jÞ ¼ bðiþ jÞ. Durrett et al. (1999) generalized
the condition on the merging and splitting rate to their ratio
satisfying the following form:

qði,jÞ ¼
cði,jÞ
jði,jÞ

¼
aðiþ jÞ

aðiÞaðjÞ

without losing the reversibility of the CFP for some positive
function a(i). However, this provides only a small number of
merge–split models which are reversible and none of the models
we have discussed in this paper satisfy this property. Our
preferential attachment model has merging rate

cði,n�iÞ ¼

q

F
iðn�iÞ i¼ 1

0 otherwise

8<
:

and splitting rate

jðn,iÞ ¼ pn:

Still, it is possible that there are a whole range of models which fit
the evolution equation (32) and produce distributions similar or
identical to truncated power laws. Our numerical investigations
suggest that CFP can produce stable distributions even when
reversibility is not satisfied.
5. Discussion

A large number of recent theoretical studies have derived
power law distributions from assumptions about how individuals
interact (Newman, 2001a, 2005; Sornette, 2004; Ma et al., 2008;
Takayasu et al., 1988; Barabasi and Albert, 1999). On the whole
these studies are concerned with producing distributions with a
power law tail rather than, as we have done here, simultaneously
deriving both the power law and an exponential decay above
some point of truncation. The exponential decay is often viewed
as an inconvenient necessity, required when fitting models to
data because all natural systems have some physical limit to their
size. In many data sets involving power laws, however, the
exponential decay should have a genuine physical, biological or
sociological interpretation (Newman, 2001b). For example, Kéfi
et al. (2007) found that vegetation patch sizes are power law
distributed with an exponential decay which reflects grazing
pressure. The animal group size distributions, we have focussed
on here, are another such example where there is a clear
truncation point in the distribution when groups become large
(Bonabeau et al., 1999; Niwa, 2003; Griesser et al., in submission).

The fact that we can link the merging and splitting of groups
with the logarithmic distribution means that it has a number of
useful properties. Indeed, it is the average group size experienced
by an individual, NP, which is central to the entire model. Some
previous models (Bonabeau and Dagorn, 1995; Bonabeau et al.,
1999; Sjöberg et al., 2000) suggested animal group size distribu-
tions should be fitted by truncated power laws but these failed to
explain where the truncation should occur or the behavioral
background of the truncation size. Both the merge and split
model and the preferential attachment model we discuss in this
paper can be used to calculate NP directly (through Eqs. (18) and
(31), respectively). The truncation parameter a can then be
calculated from NP.

We have shown that the logarithmic distribution can be
derived from mechanisms based on joining through preferential
attachment, with splitting rate increasing with group size.
Furthermore, the merge and split model in Section 2 gives
approximately the logarithmic distribution. The fact that data
generated from this model is well fit by Eq. (5), raises the
possibility that there are a whole range of site-based mechanisms
that produce something close to the logarithmic distribution. This
may explain why the logarithmic distribution is widespread in
natural populations (Niwa, 2003; Griesser et al., in submission).

While the merge & split model and preferential attachment
model provide different derivations of the same distribution,
these models produce completely different scaling relations
between NP and population size. In the merge & split model, NP

depends on the total population size F roughly linearly over small
ranges when other system parameters are fixed. In the prefer-
ential attachment model, NP is independent with the total
population. This property may apply to model selection for
empirical data. If the experienced group size grows roughly
linearly with the system size when environmental factors do
not change, probably groups in the system follow the merge and
split mechanism. Otherwise if the experienced group size does
not change with the total population, there is a good chance that
individuals chose the group to join by preferential attachment.

The research presented here has built upon two results
provided by Gueron and co-workers (Gueron, 1998; Durrett
et al., 1999; Gueron and Levin, 1995). Firstly, Gueron and Levin
provided a clear framework to describe general CFPs, i.e. Eq. (4).
We have used a discretized version of this framework to describe
our models. Secondly, for symmetrical splitting rate and merging
rate Gueron & Levin generalized logarithmic distribution to other
truncated power laws.

The logarithmic distribution is a limiting case of two important
distributions, truncated power laws (Bonabeau and Dagorn, 1995;
Bonabeau et al., 1999; Sjöberg et al., 2000) and the negative
binomial distribution (Caraco et al., 1980; Cohen, 1972; Okubo,
1986). In this sense, there is a stronger link between the different
types of distributions used to model animal groups than that has
previously been suggested (Gerard et al., 2002; Bonabeau et al.,
1999). We maintain that the logarithmic distribution should be
the first model of choice in fitting experimental data from fission–
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fusion groups, precisely because it can be related to both merge/
split and preferential attachment processes. The Gueron–Levin
distribution (Eq. (32)) or the negative binomial distribution
(Eq. (21)) then provide two useful generalizations.
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