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Collective foraging in group living animal populations displaying behavioral polymorphism is

considered. Using mathematical modeling it is shown that symmetric, spatially homogeneous (food

sources are used equally) and asymmetric, spatially inhomogeneous (only one food source is used)

regimes can coexist, as a result of differential amplification of choice depending on behavioral type. The

model accounts for recent experimental results on social caterpillars not only confirming this

coexistence, but also showing the relationship between the two types of regime and the ratio of active

to inactive individuals.
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1. Introduction

In group living animals collective decisions occur when a group
is faced with several opportunities, for example different food
sources. Numerous studies have shown that the group is able to
focus its activity on one particular option (e.g one food source),
even though no single individual is aware of all the alternatives.
This raises the interesting question of how groups make collective
decisions. The most common mechanisms leading to reliable
collective decisions in group living animals are allelomimesis
(roughly speaking, imitate what the neighbor is doing; see e.g.
Sudd, 1957; Deneubourg and Goss, 1989) and differential signal-
ing. Allelomimesis, by definition, leads to amplification, or a
snowball effect whereby all individuals end up doing the same
thing. Amplification is an essential component of many collective
decisions observed in social insects such as, for example,
recruitment to a single food source (ants: Pasteels et al., 1987;
honeybees: Seeley et al., 1991; social caterpillars: Fitzgerald,
1995). Here an individual that has discovered a profitable food
source conveys a signal leading to the source. This signal is
attractive to congeners and triggers the onset of a recruitment
process. Recruited individuals follow the signal to the food source
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and in turn reinforce it. After a certain amount of time the
majority of the foragers exploit the same food source. A decision
thus emerges because an individual behavior is amplified by the
action of many other individuals.

In most of the research on collective decision-making it is
assumed that all individuals within a group behave in the same
way (Camazine et al., 2001). At the modeling level, this
assumption is reflected by adopting a unique set of parameters
descriptive of individual behavior, like for instance mobility or the
uptake/deposit frequency of a certain object. However, it is known
that slight differences in the tendency of individual animals to
display certain behaviors may lead to very different results at the
collective level (Dussutour et al., 2005; Camazine et al., 2001). An
extreme case of individual differences is behavioral polymorph-
ism (polyethism), where individuals within a population can be
categorized into types or strategies according to their behavior
(West-Eberhard, 1989, 2003). Polyethism achieves its most
marked form in eusocial insects (Wilson, 1971), but examples of
consistent individual differences in behavior are found through-
out the animal kingdom (rodents: Kotler and Brown, 1988; Benus
et al., 1991; marine and freshwater snails: Wilson et al., 1999;
Chase et al., 2001; fruit flies: Sokolowski, 1980; Pereira and
Sokolowski, 1993; Debelle et al., 1989, 1993; Osborne et al., 1997;
nematodes: DeBono and Bargmann, 1998; DeBono, 2003). They
often pertain to foraging, where explorative and sedentary
foraging strategies coexist. Still, the role of individual differences
in the collective behavior remains largely unexplored.
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Social caterpillars provide an interesting illustration of how the
plasticity of collective behavioral patterns may arise as a result of
the interplay between amplifying interactions, individual differ-
ences and environmental factors such as the quality of food
sources. Recent experimental studies indicate the existence of two
alternative foraging strategies, which become evident under
dietary imbalance but are not apparent when foods are nutri-
tionally balanced (Dussutour et al., 2008). Specifically, when
available food sources lack carbohydrate, caterpillars within a
group fall into two clearly distinguishable behavioral categories:
active and inactive. The active caterpillars spend considerable
time in exploring the environment and relatively little time in
feeding, whereas the inactive caterpillars move moderately and
have longer meals. Interestingly, these individual differences in
behavior lead to colony decisions that are dependent upon the
ratio of populations of the two categories present in the group.
Active caterpillar-biased colonies seem less cohesive than colonies
comprising proportionately fewer active caterpillars. They do not
focus their activity on one source but split and exploit two sources
at the same time. In contrast, the more cohesive, ‘‘sluggish’’
caterpillar-biased groups focus their activity on only one source.
The outcome of the collective decision thus depends on the
composition of the group.

The present work uses mathematical modeling to show
that the coexistence of symmetric, spatially homogeneous
(both sources used equally) and asymmetric, spatially inhomoge-
neous (only one source is used) solutions constitutes in
fact a generic and robust type of behavior, arising through
differential amplification of a choice depending on behavioral
phenotype. This coexistence has not previously been observed
or modeled in collectively foraging animals. We argue that
in addition to providing an explanation of the experimental
findings in social caterpillars, it should provide a framework for
addressing a variety of collective choice related problems across
many fields.

The model and the associated evolution equations are
introduced in Section 2. Sections 3 and 4 are devoted, respectively,
to the steady-state solutions and their stability. The comparison
between the model predictions and experiments on social
caterpillars is discussed in Section 5 and the main conclusions
are summarized in Section 6.
2. The model

Consider a colony of caterpillars confronted with the choice
between two identical food sources. Let Xi and Yi (i ¼ 1;2) denote
the ‘‘active’’ and ‘‘inactive’’ individuals engaged primarily in,
respectively, exploration and feeding activities within the range of
food source i. While Y1 and Y2 remain localized at the vicinity of
sources 1 and 2, X1 and X2 move across space, both around
sources 1 or 2 as well as from 1 towards 2 or vice versa. According
to the experimental data summarized in the Introduction when
the sources are nutritionally balanced, behavioral polymorphism
has no direct effect in the sense that only the asymmetric solution
prevails, whereas in the unbalanced case X and Y are clearly
differentiated and a symmetric exploitation becomes simulta-
neously possible. In what follows we shall focus on this latter case
and, in particular, on the mechanisms for choices as to whether
spatially symmetric or asymmetric solutions occur. In doing so we
shall adopt a mean-field description, in where individual
variability is not entering explicitly in the formulation of the
evolution laws. For a total number of individuals of the order of
100 as in the present problem such a description not only remains
meaningful, but provides also valuable insights on the mechan-
isms underlying the different modes of exploitation. In the future,
it would certainly be worth undertaking agent type simulations
incorporating the effects of fluctuations.

We stipulate that the rate of change of the population densities
xi, yi of individuals in states Xi and Yi is determined by the
following processes:
�
 An inflow, f, of individuals of type X from a source, here
constituted by the bivouac,

!
f

Xi ði ¼ 1;2Þ (1)
�
 The loss, at a rate equal to r, of a fraction of Y, which becomes
disconnected from the group owing, for instance, to their
trapping in the complex network of silk trails built by the
colony:

Yi!
r
ði ¼ 1;2Þ (2)
�
 The traffic of individuals of type X between sources 1 and 2,

X1$X2 (3)

In view of the above-mentioned nature of the trails built by the
species this traffic is expected to be cooperative and, in
particular, to include positive feedback.

�
 The transitions of individuals between states X and Y, expected

again to be cooperative, in connection with the imitating
action of Y type individuals on X ones, or from Y type
individuals imitating X ones

Xi$Yi ði ¼ 1;2Þ (4)

Combining mechanisms (1)–(4) one is led to the following
structure of the evolution equations:

dx1

dt
¼ f�

dx1

dt

� �
trans

þ
dx1

dt

� �
traffic

dy1

dt
¼

dx1

dt

� �
trans

� ry1

dx2

dt
¼ f�

dx2

dt

� �
trans

þ
dx2

dt

� �
traffic

dy2

dt
¼

dx2

dt

� �
trans

� ry2 (5)

where indices trans and traffic stand, respectively, for the
contributions of processes (4) and (3) in the rate of change of
each subpopulation.

Different cooperativity models can be adopted for the transition
and traffic terms in the above equations. In what follows we
choose the following generic forms.

2.1. For the transition between states

The cooperativity underlying these transitions is taken to be of
order higher than two. Stated differently, we stipulate that
transitions occur when at least three individuals are simulta-
neously present within a small distance. A rule of the ‘‘majority’’
type is then operating if the individuals happen to be found in
different states. The simplest kinetic scheme corresponding to
such a mechanism is

X þ 2Y $
k

k0
3Y (6a)

with parameters k, k0 standing for the forward and backward
rates of transitions, respectively. The value of k0 relative to k will
reflect the possibility that a cluster of three Y type of indivi-
duals may either remain predominantly in an inactive state, or
split with some probability to yield a mixed state containing
one X type of individual. The rate equation corresponding to
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this scheme is

dxi

dt

� �
trans

¼ kxiy
2
i � k0y3

i ði ¼ 1;2Þ (6b)

2.2. For the traffic

To account for the cooperative character of this process
we augment the classical passive (linear) dependence of
the rate on the density difference (driving its force), by the
presence of a nonlinear term. The simplest expression possessing
this structure and satisfying the necessary symmetry require-
ments is

dx1

dt

� �
traffic

¼ �
dx2

dt

� �
traffic

¼ D0zþ Dz3 (7a)

where we have set

z ¼ x2 � x1 (7b)

The link between (6) and (7) on the one side and the experimental
data on caterpillars on the other, will be addressed in more detail
in Sections 5 and 6. The model predictions presented below
depend, to a large extent, on the interplay between the two
sources of cooperativity in transitions and traffic (Eqs. (6a) and
(7a)). To highlight the role of cooperativity in the latter we shall
set from now on D0 ¼ 0.
3. Steady-state solutions

Our first step is to determine the steady-state (time-indepen-
dent) solutions of Eqs. (5), which are expected to describe the long
time behavior of the subpopulations. On inspecting the second
and fourth relations (5), complemented with (6a) and setting the
time derivatives of y1 and y2 equal to zero one gets

kx1y2
1 � k0y3

1 � ry1 ¼ 0

kx2y2
2 � k0y3

2 � ry2 ¼ 0 (8)

These equations admit four types of solutions.

3.1. The trivial solution

y1 ¼ y2 ¼ 0 (9a)

corresponding to the absence of inactive individuals.
Upon substituting these values into the first and third relations

(5), complemented with Eq. (7a) with D0 ¼ 0, one sees that
there cannot be a steady state for x1 and x2 unless f ¼ 0.
More specifically, by adding and by subtracting these equations
one gets

x1ðtÞ þ x2ðtÞ ¼ x1ð0Þ þ x2ð0Þ þ 2ft

zðtÞ ¼
zð0Þ

ð1þ 4z2ð0ÞDtÞ1=2
(9b)

zð0Þ being the initial value of z. This solution is unacceptable, since
the total population x1ðtÞ þ x2ðtÞ of active individuals does not
remain bounded in time as should be expected on physical
grounds.

3.2. The first semi-trivial solution

y1 ¼ 0; y2a0 (10a)

corresponding to an exclusive exploitation of source 2.
Substituting into the first equation (5) and setting the time
derivative of x1 to zero yields then

z ¼ �
f
D

� �1=3

(10b)

This allows one to compute the non-trivial value of y2 by
summing the last two equations (5) after setting the time
derivative of x2 to zero,

y2 ¼
1

r
ðf� Dz3

Þ ¼
2f
r

(10c)

Writing the fourth equation (5) in the form

x2 ¼
r þ k0y2

2

ky2
(10d)

one obtains x2 and, finally, x1 through

x1 ¼ x2 � z ¼ x2 þ
f
D

� �1=3

(10e)

3.3. The second semi-trivial solution

y1a0; y2 ¼ 0 (11a)

corresponding to an exclusive exploitation of source 1.
Following similar manipulations as in Section 3.2 we obtain

the following values of the other variables:

z ¼
f
D

� �1=3

(11b)

y1 ¼
1

r
ðfþ Dz3

Þ ¼
2f
r

(11c)

x1 ¼
r þ k0y2

1

ky1

(11d)

x2 ¼ x1 þ z ¼ x1 þ
f
D

� �1=3

(11e)

3.4. The fully non-trivial solution

y1; y2a0

where both sources 1 and 2 are being exploited. To compute the
associated values of the variables we first observe that on adding
the first two and the last two equations of (5) at the steady state
we obtain

y1 ¼
1

r
ðfþ Dz3

Þ

y2 ¼
1

r
ðf� Dz3

Þ (12)

Writing the second equation (5) at the steady state in a form
similar to (11d), substituting into the last equation (5) and setting
x2 ¼ x1 þ z we arrive at a closed equation for z,

z
2k0D3

r2
z8 þ

kD2

r
z6 �

2k0Df2

r2
� 2rD

 !
z2 �

k

r
f2

 !
¼ 0 (13)

This equation admits the homogeneous solution

z0 ¼ 0 (14a)

corresponding to the symmetric exploitation of the two sources.
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Among the remaining solutions only two are acceptable, in
view of the number of sign changes in the coefficients of the
polynomial of 8th degree, and they are of opposite sign,

z� ¼ �a ða40Þ (14b)

For each z, the original variables can thus be evaluated using
relations (12), (11d) and x2 ¼ x1 þ z.

Summarizing, the model admits five physically acceptable
steady-state solutions for the key variable z,

0 ðsymmetric exploitationÞ

� a ðasymmetric exploitationÞ

� ðf=DÞ1=3
ðexclusive exploitationÞ (15)

from which the values of the original variables can be deduced
though relations (10)–(14).
0 10 20 30 40 50 60
time

Fig. 1. Time evolution of x1 with initial conditions around the symmetric solution

z ¼ 0 with a f value f ¼ 0:75 slightly above the critical value fc . Other parameter

values k ¼ k0 ¼ r ¼ 1 and D ¼ 0:2.
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corresponding to the exploitation of source 1 and f ¼ 0:33, leading to a periodic

solution associated to a regime of synchronization. Full lines refer to the variables

in the left ordinates.
4. Linear stability analysis and bifurcation diagram

In view of the multiplicity of steady states found in the analysis
of the preceding section it becomes necessary to identify the
conditions under which these states may coexist or, on the contrary,
those under which a particular state will prevail. This is achieved by
testing their response towards perturbations (Nicolis, 1995).

Linearizing Eqs. (5) around a reference state corresponding to
each of the five solutions in Eq. (15) one obtains a characteristic
equation of fourth degree for the rate of change, o of the
perturbations, around these states. As well known, asymptotic
stability of the reference state is secured as long as the real part of
o is negative, Reoo0. When Reo crosses zero, a change of
stability of this state is expected to occur, leading to the
bifurcation of new branches of solutions. The latter will be
stationary or time periodic depending on whether the imaginary
part of o, Imo is zero or non-zero, respectively.

A detailed analysis of the characteristic equation shows that
states z� ¼ �a are unstable, and thus physically unaccessible, for
all ranges of parameter values considered. The stability of the z0 ¼

0 state can be fully assessed analytically, since the characteristic
equation factorizes into two equations of second degree in o. This
leads to two identical pairs of o’s, each of which is a solution of
the equation

o2 þ ðkþ k0Þ
f2

r2
� r

 !
oþ kf2

r
¼ 0 (16)

As can be seen, there is a critical value

fc ¼
r3

kþ k0

� �1=2

(17)

separating two different regimes. For f4fc state z0 ¼ 0 is stable.
When slightly perturbed around it the system performs damped
oscillations whose frequency (for f near to fc) is close to fðk=rÞ1=2

(see Fig. 1). For fofc the state becomes, on the contrary,
unstable. f ¼ fc is thus a bifurcation point but, owing to the
degeneracy of the values of o, the nature of the bifurcating
branches cannot be fully assessed.

Coming finally to states �ðf=DÞ1=3 a similar, though more
cumbersome, analysis reveals also a change of stability at some
critical value f0c , where there is a pair of purely imaginary o’s and
two negative real ones. One of the latter is equal to �r and keeps
this value away from f0c as well, for the entire range of the
parameters. For f4f0c the states are stable, the opposite being
true for fof0c. Since there is here no degeneracy, the Hopf
bifurcation theorem guarantees the existence of a periodic
solution bifurcating at f ¼ f0c out of each of the states
�ðf=DÞ1=3. Numerical investigations show that this solution is
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supercritical, in the sense of developing in the range of fof0c
where the steady state is unstable. Figs. 2a and b depict the time
dependence of x1, y1 and x2, for the state given by Eqs. (11). As can
be seen x1 and y1 oscillate in near phase opposition. In other
words, there is near synchronization between the individuals of
the two types around source 1. A similar situation prevails for the
solution given by Eqs. (10).

Compared to fc (Eq. (17)), the critical value f0c is smaller in a
wide range of the values of parameters r, k, k0 and D. Notice that all
five states in (15) merge at f ¼ 0 and remain distinct for f40. On
the basis of the above information one can infer the bifurcation
diagram in Fig. 3. The diagram is limited to the local bifurcations
only and does not account for solutions that could arise from
global bifurcations occurring between fc and f0c . As clearly seen,
for f4fc one has coexistence of the inhomogeneous solutions
�ðf=DÞ1=3, describing the exclusive exploitation of a single source,
with the homogeneous one z0 ¼ 0 in which both sources are
equally being exploited. The particular state that will be attained
in the course of time depends on the initial values. Specifically, as
seen in Fig. 4, if the individuals are initially spread nearly
symmetrically on both sides one tends to the symmetric solution
and if there is initially a heavy bias towards one particular side
one tends to the asymmetric solution. Notice that each of the
three simultaneously stable states possesses its own domain of

attraction containing states whose constitution may be signifi-
cantly different from the above two limiting cases. These domains
partition the system’s state space (which here is four-dimen-
sional) into subregions, separated by frontiers containing the
unstable states. In this perspective the ratio of active and inactive
individuals, which according to the experiments is closely
associated to the mode of exploitation, appears to be the
consequence, rather than the cause, of the final outcome. In
contrast to the foregoing, in the range f0cofofc one witnesses
only the asymmetric exploitation of the resources.

We stress that the bifurcation diagram of Fig. 3 is both robust
against the choices of parameters and non-standard in the field of
collective behavior of social insects. Normalizing time through t ¼
k0t one is left with four independent parameters in the evolution
equations of the model variables : f=k0, k=k0, D=k0 and r=k0. But
actually, this number collapses into a single combination in the
Fig. 3. Bifurcation diagram indicating the values of variable z ¼ x2 � x1 as a

function of parameter f. fc: critical value at which the symmetric exploitation

mode undergoes a change of stability. f0c: critical value at which the exclusive

exploitation modes undergo a change of stability. Full and dashed lines stand for

stable and unstable solutions, respectively. The two paraboloids in the region

fof0c stand for the periodic solutions born at f0c through a Hopf bifurcation. Other

parameter values as in Fig. 1.
vicinity of the bifurcation points fc and f0c , which are the
principal organizing elements of the bifurcation diagram and
condition the stability of the solutions. As for the coexistence of
the trivial, semi-trivial and fully non-trivial steady-state solutions,
it is basically determined by the nature of the kinetic processes
present and subsists for all specific choices of parameter values as
long as f and r are not strictly zero.

The diagram of Fig. 3 contains also a number of novel features
as far as the modeling of the collective behavior of social insects is
concerned. Most, prominent among them is the coexistence of
stable symmetric and asymmetric solutions present already in a
situation of binary choice, contrary to other foraging models
where asymmetric exploitation simply replaces the symmetric
one beyond some critical value of the flux. In addition, the
diagram predicts the occurrence of sustained oscillations, not
found so far in typical foraging models. This additional richness
arises from the conjunction of the cooperativity in the transport
and of the cooperativity in transitions between the two groups of
individuals in which the population is split.
5. Comparison with experiment

The stable coexistence of both homogeneous and inhomoge-
neous modes of exploitation of the resources, in a wide range of
parameter values and ambient conditions predicted by our model
provides a qualitative interpretation of the experiments summar-
ized in the Introduction (Dussutour et al., 2008) and highlights
some of the mechanisms that are at the origin of this behavior.

To establish a more quantitative connection with experiment
we now address the role of the ratio of inactive versus active
individuals in the prevalence of a particular mode of exploitation.
To this end we evaluate the ratio y=x around a particular food
source as predicted by the model. Using Eqs. (10) one finds
straightforwardly that in the exclusive exploitation mode the ratio
for the source exploited is

y

x

� �
inh
¼

4kðf=rÞ2

r þ 4k0ðf=rÞ2
(18)

while for the homogeneous exploitation mode one gets

y

x

� �
hom
¼

kðf=rÞ2

r þ k0ðf=rÞ2

o
y

x

� �
inh

(19)
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Fig. 5a depicts relations (18) and (19) for the reference values
k ¼ k0 ¼ r ¼ 1 used in the numerical construction of the figures.
While for large f values both ratios tend to unity, one observes
significant differences for moderate (and larger than fc) f’s.
Such values seem to be more appropriate for the problem at
hand since, according to experiment, the fraction of recruited
individuals of any form engaged in foraging hardly exceeds 50%.
Taking f ¼ 1 to fix ideas, one obtains ðy=xÞinh ¼ 0:8 and ðy=xÞhom ¼

0:5 implying a higher proportion (� 66%) of active individuals
in the homogeneous state compared to the proportion (55%) in
the inhomogeneous one. This is not far from the experi-
mental data depicted in Fig. 5b, where the corresponding
proportions are here closer to 60% and 45%, respectively. The
agreement can be improved by tuning the parameters k0

and r, while ensuring that the three states of exploitation
remain stable. In fact, the very occurrence of a maximum in
Fig. 5b around the value 0.5 of the abscissa (corresponding to
the homogeneous exploitation) is a different way to express
that the curve corresponding to the inhomogeneous solution
in Fig. 5a lies always above the curve corresponding to the
homogeneous one.
6. Conclusions

In this work we developed a kinetic model for analyzing the
relative roles of cooperativity and behavioral variability in the
process of collective decision making in group living organisms, in
connection with the exploitation of simultaneously available food
sources. The model incorporates such processes as influx towards
the sources, trapping in the trails, feeding, transport (exploration)
and transitions between two states associated with ‘‘active’’ and
‘‘inactive’’ individuals. It shows the existence of a generic, hitherto
unexplored mode of resource exploitation associated with the
coexistence of both symmetric and asymmetric solutions. It
accounts for experimental results on social caterpillars concerning
not only the coexistence per se but also the relationship between the
two types of solutions and the ratio of active to inactive individuals.
Previous studies conducted on ants have focussed on the emergence
of asymmetric solutions arising from the loss of stability of the
symmetric solution. It would undoubtedly be interesting to inquire
on conditions, if any, under which mixed solutions might be
observed in this case as well, in the light of our results.

In addition to the above the model predicts the occurrence of
sustained oscillations, descriptive of a regime of synchronization, in
the range of influx values less than the stability limit of the
inhomogeneous mode of exploitation. For the reference parameter
values used (Fig. 2) the periodicity of this regime is slightly more
than 10 time units, i.e., considerably longer than the characteristic
time scales associated to the kinetic parameters k, k0 and r. There is
preliminary experimental evidence that oscillatory resource exploi-
tation does indeed occur, but it would undoubtedly be interesting to
conduct further experimental studies and perform quantitative
comparisons with the theoretical predictions. Synchronization of
behavior in social groups is expected to maintain group cohesion. It
arises, typically, from social facilitation whereby certain patterns of
behavior are imitated, or increased in frequency, by the presence or
the actions of other animals. For instance (Cole, 1991), the activity
patterns of ant colonies are synchronized even in a constant
environment, because workers are stimulated to become active by
the activity of their neighbors. In our model the transitions of
individuals between states X and Y are expected to arise from this
type of mechanism, with X individuals imitating Y ones. As shown in
our analysis, these transitions play a key role in the synchronization
observed. In this respect it is also worth emphasizing that in the
experiments by Dussutour et al. (2008) inactive-biased groups turn
out to be more cohesive and more synchronized in their foraging
behavior than the active-biased ones. Throughout the calculations
and the numerical experiments, a minimal model of cooperative
transport was used, as described by Eq. (7a). Despite apparent
differences this model can easily be related to other cooperative
models of choice between options encountered in the literature such
as the model used by Deneubourg and coworkers (Beckers et al.,
1992; Deneubourg and Goss, 1989; Nicolis and Deneubourg, 1999).
Indeed let us denote by f, Deneubourg’s choice function and write
ff ¼ f=2þ fðf � 1

2Þ. One obtains thus a term similar to the first
term in the right-hand sides of the first and third equations (5), plus
a term that vanishes for x1 ¼ x2 (or z ¼ 0) and is thus analogous to a
transport term. The difference between this representation of
transport and the one adopted here is in the presence of a linear
part in z subsisting in the absence of cooperativity. Actually, this
type of term should allow for the crossover between our analysis
and the case of balanced food sources.

Our study provides a basis for explaining plasticity in collective
behavioral patterns as a result of individual differences. This
question is novel, yet critical to understanding the role of
collective behavior in biological systems where no two individuals
are ever the same. Another area where the work may lead to
interesting insights pertains to insect outbreaks. Considerable
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work has been devoted in predicting insect outbreaks using
population-level factors and top-down approaches. Our bottom-
up approach investigating the role of individual behavior and how
it generates group-level patterns may bring a key contribution to
the field of outbreak ecology.

Some time ago, Wellington suggested that behavioral differ-
ences between active and sluggish caterpillars lead to different
colony dynamics based on the number of individuals of different
phenotypes within a colony, and that these polyethisms con-
tributed to outbreaking dynamics. According to him, colonies with
many active members feed often and develop rapidly. In contrast,
less active colonies forage over shorter distances, develop more
slowly, and show poorer survival than their more active counter-
parts. This entails that caterpillars from egg masses with higher
numbers of active individuals will grow faster and be better
foragers, and this may lead to population increases and outbreak.
Conversely, egg masses with a greater proportion of sluggish
individuals may be associated with population decline-implying
that they are somehow adaptively ‘‘senescent’’.

Now, sluggishness at the group level, which results in focusing
on a unbalanced diet, may be the most appropriate strategy in
degrading environments where better alternative foods are rare or
unavailable as reported by Kause et al. (1999) for mountain birch
caterpillars. Additionally colony with many active members is less
cohesive and consequently has a greater chance of splitting into
more vulnerable small groups, as has been observed in some of
our experiments with the emergence of two bivouacs (Dussutour
et al., 2008). Wellington found that colonies with a high
proportion of active caterpillars were too active to stay together
in their early age, so that many individuals wandered away from
the protection of the group (Wellington, 1960, 1975). It is well
known in caterpillars (Fitzgerald, 1993); forest tent caterpillars
(Costa and Ross, 2003; Despland and Le Huu, 2007), as in other
gregarious animals (Krause and Ruxton, 2002), that survivorship
of individuals in group are influenced by the size of the group.
Individuals gain protection from predators by surrounding
themselves with others as reviewed in Fitzgerald (1993), Krause
and Ruxton (2002) and Sword (2005). In addition to its direct
effect on predation, in social caterpillars, being in a big group may
also enhance larval growth rates due to the joint benefits of group
thermoregulation (Porter, 1982; Bryant et al., 2000) and coopera-
tive foraging (Denno and Benrey, 1997). As a consequence the
coexistence of the individual differences may provide a balance
between maintaining colony cohesion and optimizing food
location. Moreover collective behavior needs a balance between
efficiency in making group decision and flexibility which allows
the discovery of new resources. In caterpillars such flexibility can
be provided by the existence of individual differences.
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