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Abstract. Amplifying communications are a ubiquitous characteristic of group-living animals. This work
is concerned with their role in the processes of food recruitment and resource exploitation by social insects.
The collective choices made by ants faced with different food sources are analyzed using both a mean field
description and a stochastic approach. Emphasis is placed on the possibility of optimizing the recruitment
and exploitation strategies through an appropriate balance between individual variability, cooperative
interactions and environmental constraints.

PACS. 05.65.+b Self-organized systems — 05.10.Ln Monte Carlo methods

1 Introduction

In this work we show how collective decision making lead-
ing to different resource exploitation strategies may arise
in social insects through a mechanism of self-organization.
Emphasis will be placed on the link between the character-
istics of single individuals, the response at the population
level and the environmental constraints. As a corollary,
conditions under which the collective response can be op-
timized will be identified.

The basic mechanisms underlying the phenomena
to be considered are (a) competition between different
sources of information; and (b) the occurrence of amplify-
ing interactions between constituent units as reflected by
the presence of feedback loops. They confer a markedly
nonlinear character to the evolution of the system. A key
point of our approach will be mathematical modelling, in
close synergy with experiment, using techniques of non-
linear science such as stability and bifurcation theories.
This will allow us, in particular, to identify the key vari-
ables and parameters as well as the principal mechanisms
responsible for the behaviour. A mean field analysis in
which fluctuations and other sources of variability are dis-
carded is first carried out in Section 2. It is complemented
by an analysis incorporating the effects of variability in
Sections 3 and 4, where it is shown that variability may
be the origin of qualitatively new effects. The main con-
clusions are summarized in Section 5.

® Present address: Mathematics department, Uppsala Uni-
versity Box 480 751 06 Uppsala, Sweden.
e-mail: snicolis@math.uu.se

2 Collective decision making associated
with food recruitment: mean field analysis

Our first case study is collective decision-making associ-
ated with food recruitment in ant colonies. The mecha-
nisms of recruitment can be summarized as follows. An
ant discovers one food source, eats and returns to the nest
laying down a chemical substance known as a pheromone.
The resulting “pheromone trail” has two functions: it tells
other individuals to leave the nest and it leads them to the
food source. Ants reinforce the pheromone trail on every
trip and the source ends thus being exploited in a collec-
tive manner.

Ant colonies are usually confronted with choice and
competition between multiple food sources. We first ne-
glect individual and environmental variability and focus
on the nature of the “traffic” established along the trails
leading to the food sources. The key point allowing us to
model this situation is to recognize that direct contacts
between individuals can be ignored when compared to
an individual’s response to the pheromone concentration
present in a given trail. The principal variables are thus
the pheromone concentrations C; rather than the num-
ber of individuals present on the various trails 7 at a given
time. A generic model capturing the main features of com-
petition between the sources can then be written as [1,2].
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Fig. 1. Bifurcation diagrams of the steady-state solutions of
equation (1) as a function of ¢¢1 in the case of g2/q1 = 1

(a), and g2/q1 = 0.5 (b). Parameter values k = 6, v, = vy =
1/2400s7" and s = 2.

The first, positive, term corresponds to the attractiveness
of trail 7 over the others. Its mathematical expression has
been quantified and tested for various ant species, in par-
ticular Lasius niger [3-5], Linepitema humile [1,6], army
ants [7,8] and Messor pergandei [6,9]. Here, ¢ is the flux
of individuals leaving the nest (related to the size of the
colony), ¢; is the quantity of pheromone laid down by an
ant on the trail ¢ whose magnitude reflects the quality
of source i, s is the total number of sources visited by
the ants, k is a concentration threshold beyond which the
pheromone is effective and ¢ measures the sensitivity of
the choice. The latter parameter can also be viewed as
the strength of cooperativity between individuals. In the
following, the value ¢ = 2 will be adopted, which seems
to fit experimental data for the ant species Lasius niger.
The second, negative term corresponds to the disappear-
ance of the pheromone on the trail ¢ through, for instance,
evaporation (parameter v;).

Resolving equation (1) in the simplest case of two
sources in competition, using the parameters associated
with the species Lasius niger, leads to the bifurcation di-
agrams depicted in Figures la, 1b, according to whether
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Fig. 2. State diagram representing the parameter regions of
different modes of exploitation resources as a function of ¢q;.
Parameter values as in Figure la. (b) Bifurcation diagram of
the steady-state solutions of equation (1) as a function of ¢g:
in the case of four equal sources in competition. Parameter
values as in Figure la.

the two sources have the same or different quality. For
the case of equivalent sources, we see that there is an
equal exploitation of the two sources for small values of
pheromone deposition. After a threshold value the system
switches to a preferred exploitation of one or other source.
For different sources there is a preferred exploitation of
the richest source for small values of ¢;. After a thresh-
old value, the system switches to the possibility to exploit
the richest source or the poorest one. These results have
been corroborated by experiment for the species Lasius
niger [2-5,10,12]

In the more realistic situation where more than two
sources are present, it is useful to build a “state diagram”
summarizing the different strategies of exploitation. Fig-
ure 2a shows the number of sources against the parameter
@q, keeping q1 = g2. We see that for small values of ¢
and a high number of sources there is equal exploitation
of all the sources. In intermediate values of ¢g and a high
number of sources the colony selects with some probabil-
ity either one source or all sources. For still higher values
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of ¢q but a low number of sources, the colony finally se-
lects one source preferentially. As an example, the bifur-
cation diagram in the presence of four sources is shown in
Figure 2b. These predictions are in qualitative agreement
with experimental results showing that Messor rufitarsis
[11] changes its mode of exploitation with the number of
sources and their distribution. To gain a more quantita-
tive agreement it is important to undertake laboratory
experiments using conditions stipulated in the model.

So far an “idealized” static environment has been de-
liberately considered, in order to characterise some generic
trends that could otherwise be blurred by noise. Real
world environments are quite different. They are subjected
to imperfections of different kinds and to evolutionary pro-
cesses in their own right, imposing on the system a variety
of stresses that may elicit unexpected responses and be-
havioural modes. In the rest of this section we present
some results based on an extended form of equation (1)
emulating a “dynamic” environment. Specifically, we con-
sider the case of s = 2 sources and allow for the possibility
that one may be unavailable during a certain period of
time, adopting the following scenarios:

(i) the two sources are available during the time interval
0 <t <T. At the level of the model, equation (1) (for
s = 2) is run in its full form with both ¢; and ¢ being
LON-ZEro;

(ii) source 1 becomes unavailable during the time interval
T <t < 2T. At the level of the model, in equation (1)
(for s = 2) one takes ¢; = 0 and g2 as in (i);

(ili) source 1 becomes again available for ¢ > 27", we de-
termine the response of the system at ¢ = 37. At the
level of the model, equation (1) (for s = 2) is run dur-
ing 27 < t < 3T for ¢; values as in (i) and with an
initial condition corresponding to the state reached at
t = 2T in stage (ii).

Figures 3a, 3b summarize the new effects arising from
the dynamic environments described above. To emulate
the experimental set-up, the evaporation rates v; and 1o
are set to different values. In both cases the time inter-
val T is taken to be considerably longer than the intrin-
sic time scales associated with the parameters v; or ¢ in
equation (1). As can be seen, running the system with
fixed parameter values and two slightly different initial
conditions may lead an initial population visiting predom-
inantly source 1 to switch to source 2 (Fig. 3a) or, on the
contrary, after an intermediate stage of “hesitation” (cf.
dip in Fig. 3b) maintain the same mode of exploitation.
A similar sensitivity is encountered when the value of pa-
rameter vy is changed relative to o with identical initial
conditions, as depicted in Figures 4a, 4b. It is important
to conduct experiments to confirm these predictions.

3 Accounting for variability: Monte Carlo
approach

We now extend the above scheme to account for vari-
ability. The question is, by incorporating fluctuations in
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Fig. 3. Foraging in a dynamic environment: evolution of the
reduced pheromone concentrations according to the scenario
defined in Section 2. Source 1 becomes unavailable (g1 = 0)
in the time laps 3600 < ¢ < 7200. Integration of equation (1)
(for s = 2) and for two slightly different initial conditions:
C1(0) = 0.01 (full line) and C2(0) = 0.03 (dotted line) (a) and
C1(0) = 0.01 (full line) and C3(0) = 0.04 (dotted line) (b).
Parameter values ¢ = 025" %, 1 = g2 = 1, 11 = 1/1600s !,
vo = 1/2400s7* and k = 1.

the framework of a situation where we have food sources
in competition, do we obtain access to behaviours not
amenable to a mean-field description? To this end we
adopt a Monte Carlo approach [12,13]. The advantage
of this type of approach is that we can directly simulate
the process of interest rather than solving equations that
model it at a probabilistic level, such as the Fokker-Planck
equation [14]. In such a numerical experiment the ran-
dom aspects of the process are thus automatically incor-
porated. We can summarize the different steps as follows:

(Fig. b)

a. Initial conditions. The pheromone concentrations and
number of ants over each trail are fixed to zero.
b. Decision process.
(i) The first decision concerns the arrival of an ant to
the choice point. This probability is given by the
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Fig. 5. Organigram of the Monte Carlo simulation.

normalized value of the flux parameter ¢. A ran-
dom number is sampled from a uniform distribu-
tion between 0 and 1. If its value is less than or
equal to ¢, an ant comes to the choice point.

(ii) The second decision is the choice of the trail. The
trails will initially have the same probability of
being followed, but will differentiate as soon as
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at least one individual has adopted a trail and

laid a quantity of pheromone. The choice of a

specific trail is governed by the nonlinear fuction

F = (k+C1)?

(k+C1)*+(k+C2)?
lation of the model (Eq. (1)). It is implemented by
sampling a second random number from a uniform
distribution. If it is less than or equal to the func-
tion F}, the ant will follow and lay pheromone on
trail 1. If it is between F; and Fy + F5, it will follow
and mark trail 2, and so on.

c. Time evolution. When an ant chooses a trail 7 it lays
a quantity ¢; of pheromone that gradually disappears
through the parameter v. Hence, the probabilities rep-
resented by function F; are updated at each simula-
tion step according to the actual pheromone concen-
trations. The process is repeated for a number of steps
sufficient to reach the stationary state, where the total
quantity of pheromone over both trails is constant.

used in the analytical formu-

We first extend the mean-field model of equation (1)
by running the simulation with the parameters used in
Figure 1. Figure 6 summarizes the result. The plots rep-
resent the probability that an ant has chosen a particular
trail in the time interval considered. Clearly, the bimodal
character of these histograms constitutes the probabilistic
signature of the bifurcation phenomena predicted by the
mean-field analysis (Fig. 1).

We next apply the Monte Carlo simulation to the case
of a dynamic environment as defined in the second part
of Section 2. To establish a connection with the results
of the mean-field analysis (Figs. 3 and 4) we perform a
large number of runs and average over these individual
realizations. Adopting the same conditions as in Figure 4
we find that the average trajectory will invariably tend to
a state favouring source 2. The cross-over behaviour found
when switching from Figures 4a to 4b is thus not realized,
owing to the smoothing action of the averaging over the
initial conditions. We here have an interesting example of
the important role of stochasticity, where the dynamics
present an intrinsic sensitivity towards the initial condi-
tions or the parameters. If on the other hand, source 1
(when available) is richer than source 2, crossover becomes
possible (Fig. 7).

4 Optimizing the exploitation of resources:
the role of randomness

We start with the simplest case of a single food source. Let
N be the number of individuals exploiting this source. We
denote the inactive individuals I (for example, those still
confined to the nest or performing a random walk back
to it). W describes the workers and X the individuals
engaged in the trail leading to the food source. We stipu-
late that an inactive individual I can become a worker W
when encountering a recruiter. A worker W, with a certain
probability, can become a recruiter. Finally, a recruiter can
become inactive, for example by losing the trail.
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Fig. 6. Probability histograms corresponding to (a) sources
of equal richness and (b) unequal richness, as obtained from a
Monte Carlo simulation. In (b), the left source is the richest
one. Other parameter values as in Figure 1b.

The evolution equations thus take the form

dw
=qlX — k
P W
X w - ex
dt
dl
g —qgIX +rX. (2)

Here ¢ has the same interpretation as in equation (1). k
is the probability per unit time for a worker to become
a recruiter and r corresponds to the probability that a
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recruiter will lose the trail and become inactive. Note that
the following conservation relation is satisfied identically:

I+ W + X = N = constant.

At the steady state, equation (2) gives the trivial
solution:

Xs=Ws=0
I, =N (3a)

@

and the non-trivial solution:

- Nrf’“q
* r+k
Nk —rF
Xs = r+k
=" (3b)
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Figure 8 shows the bifurcation diagram of these solutions
and their stability. We see that there is a transcritical
bifurcation at a threshold value g. = /N of parameter q.
For q > g, the trivial state loses its stability and the non-
trivial state becomes stable. Notice that this guarantees
at the same time that W, and X, are non-negative and
thus physically acceptable.

We now seek the conditions, if any, of optimal exploita-
tion of the resources. As can be seen, no optimal W exists
with respect to ¢ or N for fixed r, k. There exists, how-
ever, an optimal W for some r, for given ¢ and N. To
compute this we take the extremum of W with respect to
r, in equation (3b), and see that dW/dr = 0 at

r* = —k+ k2 + kNq. (4)
Since r reflects the randomness at an individual level, we
may interpret this result as the existence of optimal ran-
domness at which recruitment is the most intense. Ran-
domness ensures the “recycling” or “reshuffling” of the
population, since individuals I are eventually bound to
return to the nest whereupon they will again be recruited
through the first step (which is the only cooperative step)
of our scheme. It can be checked that the value of W at
the optimum increases with both IV and gq.

We next consider the case of two competing food
sources. To account for the role of variability in the pro-
cess of competition we again augment the deterministic
model (Eq. (1) for s = 2) and carry out a Monte Carlo
simulation, as in Section 3. We raise the question of the
existence of parameter ranges for which the selection of
the richest source can be optimized, when two sources of
different richness are offered to the colony. First let us see
the role of the size of the colony, parameter ¢ in equa-
tion (1). Figure 9 shows a plot of the selection of the rich-
est source against ¢. We see that individuals from small
colonies have to lay down more pheromone to select the
richest source. On the other hand, individuals from big
colonies may lay down less pheromone to select the richest

The European Physical Journal B

0.85
G@= 2 ——
q1 =05 v
g 0.8 11
5
@
~ 075
1]
1}
L
0
° 0.7
S
‘6
S 065
®
c
S 06
B
]
[0}
®  0.55
05
0 0.005 0.01 0.015 0.02 0.025 0.03
[

Fig. 9. Selection rate of the richest source as a function of the
parameter ¢ for g2/q1 = 0.75. Other parameter values as in
Figure 1.

0.9

Qlgy =0.25 ——

0.85 ley =075

0.8
0.75
0.7
0.65

0.6

Selection rate of the richest source

0.55

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Ll

Fig. 10. Selection rate of the richest source as a function of
the parameter ¢; for ¢ = 0.1s71. Other parameter values as in
Figure 1.

source and, moreover, in a better way. This may provide
a rationale for the well known fact that trail recruitment
mainly occurs in large ant colonies.

The key parameter of this study is the pheromone de-
position. In the graph of Figure 10 where the selection of
the richest source is plotted against the pheromone depo-
sition, we see the existence of an optimal value of the pa-
rameter for which the exploitation is maximal. We can see
that the maximal exploitation is higher when the differ-
ence between the source qualities is large. This reflects the
fact that in this scenario competition is less pronounced.

The existence of an optimal ¢ shows that there is a
noise level that maximizes the response in terms of effi-
ciency — at first sight, a counter-intuitive result. It opens
some tantalizing perspectives that would be worth imple-
menting experimentally in the future by deliberately tun-
ing the values of the parameters involved.



S.C. Nicolis and A. Dussutour: Resource exploitation strategies in social insects

5 Conclusions

In this paper some generic features of the self-organizing
patterns associated with resource exploitation in social in-
sects have been addressed. Emphasis was placed on the
transition from individual behaviour where only local in-
formation is available, to the collective scale where the
colony as a whole becomes capable of choosing between
the different options afforded by the multiplicity of the
solutions of the underlying evolution laws.

On the one hand, the process of choice leads to ro-
bust modes of exploitation, as reflected by the stability
of each of the resulting solutions beyond its bifurcation
points. But on the other, the response has a marked plas-
ticity conferred by the conjunction of multiplicity, individ-
ual variability and environmental constraints associated,
for instance, with heterogeneities or to the temporary un-
availability of certain resources. In particular (cf. Figs. 3,
4 and 7), the response may switch between the options
available in an unexpected way, depending on the initial
conditions and the ranges of parameter values considered.

A further manifestation of the far reaching role of vari-
ability analyzed in this paper has been the existence of
optimal responses, attained when randomness exceeds a
finite level (Eq. (3) and Figs. 9, 10). Again, such responses
can only arise in the presence of cooperativity and non-
linearity, which provide the necessary amplification mech-
anisms.

Although obtained in the context of social insect bi-
ology, our results are in many aspects paradigmatic. As
such, they are expected to apply to a variety of other
biological processes [10] or artificial systems [15]. For in-
stance, aggregation involves a logic similar to that of food
recruitment, as a colony has the choice of different rela-
tive attractive sites to aggregate. It can therefore be ex-
pected that fluctuations are at work and that there exists
an optimal value of amplification and interactions between
animals.

Of special interest is the possibility of building
mixed societies composed of animals and of artificial
agents [16,17]. An exciting possibility is the control of the
behaviour of a population. If realizable, this could have
far reaching applications in a variety of fields including
agriculture. For instance, one could take advantage of am-
plifying interactions to induce synchronization through an
artificial agent in a population of farm animals. In a differ-
ent vein, data analysis complemented by modelling could
lead to the identification of environmental conditions and
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stresses that cause the onset of undesirable abnormal be-
haviours such as aggression or high mortality, which could
be subsequently avoided.

SCN was supported by a post doctoral fellowship of University
of Oxford. We thank the referees for their helpful comments.
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