
R

S
a

b

a

A
R
R
A

K
S
C
S
F

1

a
r
a
D
c
t
b
s
(
i
W
1

r
d
d
“
t
t
c

a
r
o

0
d

BioSystems 103 (2011) 73–78

Contents lists available at ScienceDirect

BioSystems

journa l homepage: www.e lsev ier .com/ locate /b iosystems

esource exploitation strategies in the presence of traffic between food sources

.C. Nicolisa,∗, A. Dussutourb

Mathematics Department, Uppsala University, P.O. Box 480, SE-751 06 Uppsala, Sweden
Centre de Recherches sur la Cognition Animale (UMR 5169, UPS - CNRS), Université Paul Sabatier, 31062 Toulouse, France

r t i c l e i n f o

rticle history:
eceived 5 July 2010

a b s t r a c t

A mathematical model of food recruitment and resource exploitation in group-living organisms account-
ing for direct traffic of individuals between the available sources is developed. It is shown that traffic
eceived in revised form 5 September 2010
ccepted 1 October 2010

eywords:
elf-organization
ollective decision-making
ocial insects

between sources gives rise to the enhancement of the range of stability of the homogeneous mode of
exploitation and of the range of coexistence of homogeneous and semi-inhomogeneous ones, as well as
the appearance of symmetry breaking transitions leading to fully inhomogeneous exploitation modes.
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. Introduction

One of the most intensely studied cases of communication in
nimal societies and, most particularly, in social insects is foraging
ecruitment. It has been shown (Camazine et al., 2001; Dussutour et
l., 2004; Vittori et al., 2006; Detrain and Deneubourg, 2006, 2008;
ussutour et al., 2009a,b) that this phenomenon often involves
ollective decision making leading to different resource exploita-
ion strategies, through a mechanism of self-organization induced
y amplifying interactions between individuals. Depending on the
pecies these may imply direct interactions as it happens in bees
Camazine and Sneyd, 1991; Seeley et al., 1991; Seeley, 1995) or
ndirect ones via chemical trails as it happens in ants (Sudd, 1957;

ilson, 1962; Hölldobler and Wilson, 1990; Robson and Traniello,
995).

The mechanism of recruitment via chemical trails for mass
ecruiting ants can be summarized as follows: An individual
iscovers one food source, eats and returns to the nest laying
own a chemical substance known as pheromone. The resulting
pheromone trail” has two functions: to alert the other individuals
o get out of the nest and to lead them to the food source. On each
rip ants reinforce the trail and the selection of a particular source
an thus be viewed as the result of a collective decision.
Ant colonies are usually confronted with the choice between
lternative food sources. An important step in understanding of
ecruitment behavior under these conditions has been the design
f experiments in deliberately idealized situations. This has also

∗ Corresponding author.
E-mail address: snicolis@math.uu.se (S.C. Nicolis).

303-2647/$ – see front matter © 2010 Elsevier Ireland Ltd. All rights reserved.
oi:10.1016/j.biosystems.2010.10.002
facilitated the development of mathematical models in which the
parameters can be determined directly from the experiment. A
by now classical scheme considered in this context is the case of
two sources connected to the nest by a bridge-like device involv-
ing two simultaneously available branches of adjustable lengths
(Robson and Traniello, 1995; Beckers et al., 1992b, 1993; Detrain
and Deneubourg, 1997; Dussutour et al., 2004, 2009a,b; Vittori et
al., 2006). Here the competition between the two chemical trails
formed by depositing pheromone on the branches gives rise to a
variety of nonlinear phenomena associated with different modes of
traffic between the nest and the sources. Specifically, for the case of
equivalent sources, there is an equal exploitation of the two sources
for small amounts of pheromone deposit per time unit, reflected by
the prevalence of symmetric (homogeneous) states. After a thresh-
old value of this parameter the system switches to a preferred
exploitation of one or other source through a pitchfork bifurcation
marking the prevalence of asymmetric (inhomogeneous) states. For
different sources there is a preferred exploitation of the richest
source for small values of pheromone deposition. After a thresh-
old value corresponding to a limit point bifurcation, the system
switches to the possibility to exploit the richest source or the poor-
est one. These results have been amply corroborated by experiment
for the species Lasius niger (Beckers et al., 1992a,b, 1993).

In the present paper a model accounting for direct traffic of
individuals between the available sources in addition to indirect
one through the nest as above, as well as for the presence of more

than two sources, is reported and analyzed in detail. Emphasis is
placed on the role of some key properties, such as of the number
and geometry of the spatial arrangement of the sources, in the types
of solutions generated by the model equations. The general formu-
lation is presented in Section 2. Sections 3–5 are devoted to the

dx.doi.org/10.1016/j.biosystems.2010.10.002
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:snicolis@math.uu.se
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4 S.C. Nicolis, A. Dussutour

nalysis of some prototypical case studies pertaining to different
umbers and configurations of the sources relative to the nest. The
ole of direct traffic between sources in the exploitation strategies
s brought out and some new, traffic-induced effects are identi-
ed. The main conclusions along with suggestions on experiments
o be undertaken in order to check the theoretical predictions are
ummarized in Section 6.

. Formulation

In the following we will be concerned exclusively with food
ecruitment by chemical trails. Let {Ni} (i = 1, . . . s) be the pop-
lation densities around a source i and {ci} the pheromone
oncentrations in the trails 1, . . . s leading from the nest to the
ources. At the level of a macroscopic (mean-field) description we
xpress their rate of change with time as follows:

dNi

dt
= �q̄iFi({cj}) − �iNi +

∑
j /= i

Jij (1a)

dci

dt
= aiNi − bici i = 1, . . . , s (1b)

he first (positive) contribution in Eq. (1a) displays a choice func-
ion Fi, describing the relative attractiveness of trail i by a single
nt over the others. � is the total ant flow from the nest and q̄i the
uantity of pheromone deposited on trail i. The second (negative)
erm corresponds to the spontaneous loss of activity of a fraction
f individuals initially engaged on source i. The third term accounts
or the traffic of individuals between source i and sources j(1, . . .,
− 1, i + 1, . . . s) as expected to arise in realistic situations. Finally
he two terms in Eq. (1b) describe the production of pheromone
y the foraging individuals and the disappearance of pheromone
hrough, for instance, evaporation.

The mathematical form used in the sequel for the choice func-
ion has been derived and tested for various species, in particular
asius niger (Deneubourg and Goss, 1989; Beckers et al., 1992a,b,
993):

i({cj}) = (k + ci)
�

s∑
j=1

(k + cj)
�

(2a)

here k is a concentration threshold beyond which the pheromone
s effective and � measures the degree of cooperativity in the pro-
ess of choice. The mathematical expression of the traffic term
ij is, on the other hand, not well established. The idea advanced
n this paper is that traffic between sources reflects primarily
a), individual-level randomness; (b), the exploration of the envi-
onment by individuals having attained the sources and moving
ubsequently, with some probability, in the part of space outside
he trails joining them with the nest; and (c), crowding effects in the
ense that if the density of individuals (and hence of pheromone)
round a particular source is very high, individuals will have a ten-
ency to move away from it and explore other possibilities. To a first
pproximation, it appears reasonable to model the motion result-
ng from the conjunction of the foregoing elements by a random

alk. In the continuous space limit this would give rise to a process
f diffusion described by a Fick type law. In the discrete represen-
ation adopted in the present work one is on the other hand led to
he expression:
ij = Dij(Nj − Ni) (2b)

here the transfer coefficients Dij depend on the length and texture
f the channel through which sources i and j communicate and are
ssumed to define a symmetric, positive definite matrix.
stems 103 (2011) 73–78

We emphasize that the processes described by Eqs. (2a) and (2b)
coexist at each stage of evolution of the variables Ni and ci. Pro-
cess (2a) is predominantly cooperative and, if expressed in terms
of the differences ıci = ci − cj (j /= i) leads to the first order in ıci
to an expression reminiscent of chemotactic motion, in the sense
that ci would tend to grow further in time if initially ıci happened
to be positive. In principle random motion should also be present
in the traffic manifested, for instance, by U-turns performed by
the individuals and directing them from high to low concentration
regions. This is, simply, neglected in Eq. (2a) as it may reasonably be
expected to be the case if the density is sufficiently large. In contrast
to (2a) process (2b) is predominantly random/passive, in the sense
that Ni tends to decrease in time if initially ıNi = Ni − Nj happens to
be positive. Cooperative transport effects may also be present and
can in principle be incorporated as corrections to the passive traffic
terms, considered to be the dominant ones. In this work they are
neglected to first approximation. The situation is different in certain
species as, for instance, social caterpillars which as they move build
complex networks of trails that subsequently affect their mobil-
ity, in which case transport is expected to be cooperative to the
dominant order (Nicolis et al., 2008).

In the following it will be assumed that the characteristic times
of pheromone production and evaporation, a−1

i
and b−1

i
in Eq. (1b)

are much shorter than those implied in the recruitment and trans-
port processes in Eq. (1a), in other words, pheromone concentration
depends on time predominantly through the time dependence of
the numbers of individuals present. Accordingly, after a short initial
time period a quasi steady-state regime is expected to be estab-
lished whereby the two terms in the right hand side of Eq. (1b) will
balance each other,

Ni ≈ bi

ai
ci

Substituting the above “equation of state” into Eq. (1a) one obtains
then a closed set of equations for the ci’s,

dci

dt
= �qiFi({cj}) − �ici +

∑
j /= i

Dij

(
cj − ci

)

where we have set qi = q̄iai/bi.
In the sequel the parameter � will be fixed to a value � = 2 com-

patible with experiments carried out for the ant species L asius niger
(Beckers et al., 1992a,b), and the ci’s will be normalized such that k
can be set equal to unity. Furthermore, we assume that the sources
presented to the colony and the trails linking the sources to the
nest have identical characteristics, and thus set all �i’s and qi’s to
a common value �i = �, qi = q. Under these conditions, the following
results can be established for the solutions of Eqs. (1) in absence of
traffic terms Jij (Nicolis and Deneubourg, 1999):

There exists a unique homogeneous steady-state solution in
which all sources are exploited in an identical manner:

c0
i = �q

s�
= c0 (3a)

where the superscript indicates the absence of communication
between sources. This solution loses its stability beyond a critical
value of parameter �q/�,

(
�q

�

)
c

= s (3b)
Beyond the instability threshold Eqs. (1) admit semi-
inhomogeneous solutions in which j trails having a common
concentration c0

1 are exploited in a different manner with respect
to the other s − j ones having a common concentration c0

2 = 1/c0
1,
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ith

c0
1,± = �q

2�j
± 1

2

√(
�q

�j

)2

− 4
(

s − j

j

)

j = 1 . . .
s

2
, s even

j = 1 . . .
s + 1

2
, s odd

(4)

mong these solutions, only branch c0
1+ and c0

2+ = 1/c0
1+ of the

ase j = 1 are stable. All solutions cross the homogeneous branch
3a) at the critical value (3b) of the bifurcation parameter �q/� and

erge, typically, pairwise through limit point bifurcations corre-
ponding to the vanishing of the argument of the square root in
q. (4). Notice that for s = 2 and j = 1 there are two stable branches
ifurcating symmetrically at the critical value (3b) (pitchfork bifur-
ation) corresponding to trails that are more or less heavily marked
nd thus to a fully inhomogeneous solution. For s > 2 symmetric
airs of branches still exist as mathematical solutions, but they are
ll unstable.

Our objective in this work is first, to determine how the above
esults are modified by the presence of the traffic terms Jij in Eqs.
1) and second, to explore the possibility of new, transport-induced
ffects. On inspecting Eqs. (1), (2b) and (3a) one sees straightfor-
ardly that the homogeneous state in the presence of traffic is still

iven by (3a),

i = �q

s�
= c̄ (5a)

o assess its stability we linearize (1) around c̄,

dıci

dt
=

∑
k

Aikıck (5b)

ith

Aii = 2�q(s − 1)
s(s + (�q/�))

− (� +
∑
k /= i

Dik) ≡ a

Aij = −2�q

s(s + (�q/�))
+ Dij ≡ b

(5c)

he stability condition of the homogeneous solution is, then,
eω˛ < 0 for all ˛, where the ω˛’s are solutions of the characteristic
quation:

et |Aij − ωıkr
ij | = 0 (5d)

t criticality itself and in absence of time-periodic solutions (as is
he case in the present problem) Eq. (5d) admits the solution ωc = 0
nd

et |Aij| = 0 (5e)

n the next sections we derive the explicit form of the stability
ondition along with the structure of the bifurcating solutions in
number of representative situations.

. Two identical communicating sources

The traffic term J12 reads

12 = D(c2 − c1) = −J21 (6)

e have from (5a) and (5c):

c1 = c2 = c̄ = �q

2�
A11 = A22 = �q

2 + (�q/�)
− (� + D)

A12 = A21 = −�q

2 + (�q/�)
+ D

(7)
Fig. 1. Schematic representation of three identical equidistant food sources sur-
rounding the nest. Ants arrive at the choice point from the nest located beneath the
plan of the figure.

The criticality condition (5e) yields after a straightforward calcula-
tion,

(
�q

�

)
c

= 4(D/�) + 2
1 − 2(D/�)

(8)

For D = 0 we recover condition (3b). As coupling is gradually
strengthened on the instability threshold increases monotonously,
entailing that bifurcation is postponed owing to the stabilizing
action of the coupling on the homogeneous state. Eventually,
beyond the value D/� = 1/2 bifurcation is suppressed and the
homogeneous state remains stable thereafter. To obtain the inho-
mogeneous steady-state solutions in the range of D/� values less
than 1/2 we use the property c1 + c2 = �q/� and write the steady-
state form of Eqs. (1) for s = 2 as:

(1 + c1)2

(1 + c2)2
= −D(�q/�) + (� + 2D)c1

−D(�q/�) + (� + 2D)c2
(9)

We obtain in this way a closed equation for c1,

(� + 2D)c2
1 − (� + 2D)

�q

�
c1 + � + 2D + 2D

�q

�
+ D

(
�q

�

)2

= 0 (10)

giving rise to a symmetric pair of stable inhomogeneous solutions
born at the threshold value (8) and bifurcating beyond this value,
as the uniform steady-state solution loses its stability.

4. Three identical and equidistant communicating sources

Fig. 1 provides a sketch of the configuration considered in this
section. The traffic term Jik now reads

∑
k /= i

Jik = D(ci+1 + ci−1 − 2ci) (11)

where all indexes are taken mod 3. Eqs. (1) still admit the homoge-

neous steady-state solution

c1 = c2 = c3 = c̄ = �q

3�
(12)
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Fig. 3 illustrates a typical “quasi-linear” configuration, in which
the distance between sources 1 and 3 is larger than the distances
between 1–2 and 2–3, supposed to be equal. Expression (11) is
ig. 2. Bifurcation diagram of steady-state solutions of Eqs. (1) in the geometry of
ig. 1. c± and c′

± represent the semi-inhomogeneous states as given by Eq. (15a) and
15b) while the central branch stands for the homogeneous state. Full and dashed
ines denote stable and unstable solutions, respectively. Parameter values: D/� = 0.1.

o obtain the full set of steady state solutions we divide the steady
tate form of these equations by pairs. We obtain (cf. also Eq. (9)):

(1 + c1)2

(1 + c2)2
= −D(�q/�) + (� + 3D)c1

−D(�q/�) + (� + 3D)c2

(1 + c1)2

(1 + c3)2
= −D(�q/�) + (� + 3D)c1

−D(�q/�) + (� + 3D)c3

(13)

In addition to state (12) these equations admit the three semi-
nhomogeneous solutions

i = c, cj1 = cj2 = c′; i, j1, j2 = 1, 2, 3 j1, j2 /= i (14)

here c satisfies the equation (to be compared with Eq. (10)):

� + 3D

2
c2 − �q

2�
(� + 2D)c + � + 3D + 2D

�q

�
+ D

2

(
�q

�

)2

= 0 (15a)

nd

′ = 1
2

(
�q

�
− c

)
(15b)

or D = 0 the solutions of Eq. (15a) reduce to the result of Eq. (4).
ur objective is here to determine the dependence of c on the
oupling parameter D and to assess the range of stability of the
emi-inhomogeneous states. Of special interest will also be the pos-
ibility of coexistence of simultaneously stable homogeneous and
emi-inhomogeneous states.

We first note that among the two solutions of Eq. (15a) there is
ne branch cutting the homogeneous solution c̄, Eq. (12), at a value
f parameter �q/� obtained by setting c = c̄:

�q

�

)
1

= 3(1 + 3(D/�))
1 − 3(D/�)

(16a)

his branch extends on both sides of this particular state and even-
ually merges with the other non-negative branch through a limit
oint bifurcation at parameter values corresponding to the vanish-

ng of the discriminant of Eq. (15a):

�q

�

)
2

= 2(4(D/�) +
√

2)(1 + 3(D/�))

1 − 8(D/�)2
(16b)
or each value of c there is also the corresponding value of c′ given
y Eq. (15b). The set of four values of c and c′ represents, then, the
umber of values that each of the variables c1, c2, c3 can take as the
arameters are varied.
Fig. 3. Schematic representation of three linearly disposed food sources. Ants arrive
at the choice point from the nest located beneath the plan of the figure.

Fig. 2 depicts the corresponding bifurcation diagram. Stability
analysis using Eq. (5) shows that the homogeneous solution loses
its stability beyond the threshold value (�q/�)1. The stability of the
semi-inhomogeneous states can be analyzed along similar lines,
with the elements Aij of the linearized operator (Jacobian matrix)
being now given by

Aii = �q

2(1 + ci)
∑
j /= i

(1 + cj)
2

[(1 + c1)2 + (1 + c2)2 + (1 + c3)2]
2

− (� + 2D)

Aij = �q
−2(1 + ci)

2(1 + cj)

[(1 + c1)2 + (1 + c2)2 + (1 + c3)2]
2

+ D (i /= j)

(17)

As it turns out there is a range of values of s = (�q/�)1 − (�q/�)2 in
which semi-inhomogeneous states coexist and are simultaneously
stable with the homogeneous one. This range tends to increase as
D is gradually increased, but eventually for large D’s one witnesses
the disappearance of both the crossing and the limit points.

5. Three identical non-equidistant communicating sources
Fig. 4. Bifurcation diagram of the steady-state solutions of Eqs. (1) in the geometry
of Fig. 3. Full and dashed lines denote stable and unstable solutions, respectively.
Parameter values: D/� = 0.2.
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Fig. 5. Evolution of ci ’s in time (normalized by the evaporation rate �) for �q/� = 15
a
e
e
f

r

T
s

c

w

A
t
c
f

a

c

nd D/� = 0.2 and for different initial conditions. (a) c1(0) = c3(0) = 3.5, c2(0) = 9, the
volution leads to a semi-inhomogeneous state. (b) c1(0) = 1, c2(0) = 0, c3(0) = 0.5, the
volution leads to a fully inhomogeneous state. Right ordinates in (a) and (b) stand
or c2 and for c2, c3, respectively.

eplaced by∑
k /= i

Jik = D(c2 − ci) i = 1, 3

∑
k /= 2

J2k = D(c1 + c3 − 2c2)
(18)

he evolution equations still admit the homogeneous steady-state
olution (12) as well as the semi-inhomogeneous solutions

2 = c, c1 = c3 = c′ = 1
2

(
�q

�
− c

)
(19)

here c now satisfies a cubic equation,

3
2

(� + 3D)c3 − (2�q + 9�qD

2�
)c2

+
{

(� + 3D)[1 + 2(1 + �q

2�
)
2

] + D
(

�q

�

)2

− 2�q

}
c

−D
�q

�

{
1 + 2(1 + �q

2�
)
2
}

− �q = 0

(20)

new point is that in addition to solutions (19) and (20) the equa-
ions may now admit fully inhomogeneous solutions, in which
1 /= c3. To determine them we divide the steady-state solutions
or c1 and c3,

(1 + c1)2

= (� + D)c1 − Dc2 (21a)

(1 + c3)2 (� + D)c3 − Dc2

nd eliminate c3 through the sum condition

1 + c2 + c3 = �q

�
(21b)
stems 103 (2011) 73–78 77

One arrives in this way at an equation linking c2 to c1,

Dc2
2 −

{
2D + D

�
�q + (D + �)c1

}
c2 + (D + �)c1

(
�q

�
− c1

)

− (D + �) = 0 (22)

Solving formally for c2 and substituting into one of the original
steady-state equations yields a closed equation for c1, from which
c2 and c3 can also be deduced. Fig. 4 summarizes the main results
in the form of a bifurcation diagram for the variable c1. Stability
analysis along similar lines as in the previous sections shows that
there is a pair of stable fully inhomogeneous solutions bifurcat-
ing at parameter value for which the homogeneous solution loses
its stability. We are thus here in presence of a transport-induced,
symmetry-breaking transition reminiscent of the Turing instability
(Turing, 1952) arising in wide classes of reaction-diffusion systems.
Furthermore, in certain ranges of parameter values these inhomo-
geneous branches may coexist and be simultaneously stable with
a semi-inhomogeneous solution as illustrated further in Fig. 5, in
which the results of a direct time integration of the full nonlinear
equations for the ci′s are depicted. Notice that as long as time is
scaled by the evaporation rate � the evolution is fully controlled by
the two parameters �q/� and D/�.

Finally, one can handle along the same lines the more general
case where all distances between sources are unequal, a feature that
can be accounted for by introducing different values of the pairwise
transfer coefficients. In this setting, the only non-homogeneous
states are fully inhomogeneous solutions of the evolution equa-
tions.

6. Conclusions

In this paper a mathematical model of self-organization in social
insects, associated with recruitment in the presence of direct traf-
fic of individuals between food sources has been developed. The
analysis brought out some new features arising from the existence
of additional communication channels as compared with the more
limited communication between each individual source and the
nest ordinarily considered in the literature, such as: enhancement
of stability of the homogeneous state, enhancement of the domain
of coexistence of homogeneous and semi-inhomogeneous states,
and transport-induced symmetry breaking transitions leading to
fully inhomogeneous states that can be in stable coexistence with
semi-inhomogeneous ones in certain ranges of parameter values.

The coexistence of homogeneous and semi-inhomogeneous
exploitation modes in mass recruitment, for the same parameter
values, was already reported in Nicolis and Deneubourg (1999). The
enhancement of the coexistence domain as well as of the domain
of stability of the homogeneous mode found in the present work
implies that in the presence of intersource traffic these regimes
are more robust towards perturbations and thus biologically more
significant. The emergence of fully inhomogeneous states through
symmetry-breaking instability is potentially even more signifi-
cant, as it heralds the onset of a new mode of organization in
which a highly non-trivial “division of work” is installed between
the individuals even though they are undistinguishable and non
specialized at the outset. So far this type of regime remains unex-
plored in the food recruitment literature per se, but has been found
experimentally to exist and has been analyzed theoretically in the
context of certain forms of collective behavior associated with

the uptake, transport and deposition of material (Theraulaz et al.,
2002). Furthermore, beyond the social insect literature the resource
exploitation patterns found in slime molds (Nakagaki et al., 2004)
are studied in a setting that allows automatically for traffic between
the sources.



7 / BioSy

l
w
s
t
s
s
d
n
b
p
l
v
g
t
e
w
b
a
p
e

b
c
(
e
u
u

t
t
e
c
m
p
c
S
d
o
i
t
p

i
o
e
a
i
a
t
n
i
m

8 S.C. Nicolis, A. Dussutour

The results derived in this work bring also the recruitment prob-
em closer to the context expected to arise in real world situations,

here individuals can circulate freely around and between the food
ources. They can be exploited to design controlled experiments
hat could lead to the observation of the patterns predicted and
ummarized in Figs. 2, 4 and 5. The idea would be, first to link the
ources by additional bridges and test the adequacy of Eq. (2b) in
escribing the nature of traffic between sources in the absence of
est, by releasing individuals in randomly selected parts of these
ridges. The next step would be to carry out the experiment in the
resence of nest and monitor the frequency of visits of the trails

inking the nest to the sources as a function of the total flux of indi-
iduals for various spatial arrangements of the sources, as in the
eometries adopted in Figs. 1 and 3. Depending on the length and
exture (Detrain et al., 2001) of the source-to-source trails differ-
nt values of the effective coupling coefficient D can be achieved
hose influence on the type and stability of the state that can

e realized can then be assessed (see also (Aron et al., 1990) for
somewhat analogous study in which traffic between different

arts of a nest linked by a network of trails was instead consid-
red).

On the theoretical side, it would be worth extending the analysis
eyond the range of validity of the adiabatic elimination pro-
edure outline in Section 2 using the full set of Eqs. (1a) and
1b). The question would then be whether the stability prop-
rties of the various solution branches will be affected, being
nderstood that the steady state solutions themselves will be left
naffected.

In natural conditions the parameters pertaining to each of
he food sources and to the texture of the different trails are,
ypically, different. Furthermore, the sources become eventually
xhausted. Our simplified model (all sources and trails are identi-
al and constantly replenished) allows to sort out the underlying
echanisms, analyze the influence of the parameters and dis-

ose thus of a reliable reference point in the perspective of a
omparison with experiment along the above envisioned lines.
till, it would be interesting to augment the model by intro-
ucing some of these real-world complications. A different type
f extension would be to account for the variability inherent in
ndividual behavior, the discovery of the sources being typically
he result of random exploration rather than of a deterministic
rocess.

By their generic character the models developed and analyzed
n this work should apply if suitably adapted to a wide range
f situations involving collective decision-making and resource
xploitation in insect societies beyond mass recruitment and for-
ging, such as aggregation and building-related activities. Finally,
n higher group-living organisms individuals dispose of far more

dvanced mobility and more generally communication capabili-
ies than social insects. It may thus be expected that they will make
on-trivial uses of the extra flexibility afforded by the availabil-

ty of direct linkages between available options in their decision
aking.
stems 103 (2011) 73–78
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