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The recent turbulence on the world’s stock markets has reinvigorated the attack on classical
economic models of stock market fluctuations. The key problem is determining a dynamic model,
which is consistent with observed fluctuations and which reflects investor behavior. Here, we use
a novel equation-free approach developed in nonlinear dynamics literature to identify the salient
statistical features of fluctuations of the Dow Jones Industrial Average over the past 80 years.
We then develop a minimal dynamical model in the form of a stochastic differential equation
involving both additive and multiplicative system-noise couplings, which captures these features
and whose parameterization on a time scale of days can be used to capture market distributions
up to a time scale of months. The terms in the model can be directly linked to “herding”
behavior on the part of traders. However, we show that parameters in this model have changed
over a number of decades producing different market regimes. This result partially explains how,
during some periods of history, “classic” economic models may work well and at other periods
“econo-physics” models prove better.
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1. Introduction

Financial activities as examplified by stock market
fluctuations constitute a highly relevant example
of complex nonlinear behavior in human sys-
tems. They highlight the intertwining, on a global
scale, of order and disorder despite the supposedly
rationality-driven motivations and actions of the
actors at the individual level. Clearly, monitoring
and prediction become here key issues.

The classical view of stock market growth pos-
tulates that market returns are independent of each
other over anything but the very shortest of time
scales [Samuelson, 1965; Fama, 1965]. This postu-
lation leads one to map stock market growth to

Brownian motion, one of the most familiar prob-
lems in the theory of stochastic processes. In prac-
tice, to account for the undeniable variation in the
size of fluctuations on stock markets, the variance
of these models is stipulated to change dynami-
cally. Important families of models in this respect
are ARCH, GARCH and stochastic volatility mod-
els [Engle, 1982, 1995; Chernov et al., 2003] which
assume that the variance of the current market
return is a function of the magnitude of recent previ-
ous returns. Put in terms of human behavior, these
models reflect the observation that large changes in
the market generate uncertainty leading to further
uncertainty and more fluctuations.
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During the last decades, stock market behav-
ior has been revisited using ideas and tools from
the theory of stochastic processes and statistical
mechanics as applied to critical phenomena. In
this view, the limitations of both the Brownian
motion and GARCH style models are pointed out
and emphasis is placed instead on the observation
that some of the most characteristic indicators of
financial activities display long-range correlations
and follow fractal scaling laws over several orders
of magnitude. Such properties are reminiscent of
multifractal processes [Vandewalle & Ausloos, 1998;
Calvet & Fisher, 2001] and have on these grounds
been modeled as multiplicative cascade processes
[Schmitt et al., 2000]. They are also compatible
with a Levy stable distribution [Buchanan, 2009;
Mandelbrot, 1963; Mantegna & Stanley, 1995]. One
important characteristic of the Levy-stable distri-
bution is that it has a power law tail with expo-
nent less than 3, thus predicting the very large
fluctuations, crashes and rallies, of the kind seen in
stock markets [Mandelbrot, 1966; Blanchard, 1979;
Bouchaud & Cont, 1998; Sornette & Malevergne,
2001; Sornette & Johansen, 1997].

In fact, the exponents in distributions of market
fluctuations are usually more than 3, and GARCH
models also produce power law tails consistent with
data for a given time scale [Sornette, 2001; Dehaan
et al., 1989]. However, GARCH models have a fixed
time scale and are usually not consistent with the
data on a range of time scales [Farmer, 1999]. We
are thus left with two types of view: Levy laws
and multifractal models that potentially capture
scaling behavior of returns and related quantities;
and GARCH models which give an ad-hoc means
of modeling fluctuations on a given time scale.
Furthermore, neither of these models are explain-
able in terms of trader behavior. The question of
providing a dynamic model that reflects the mech-
anisms at work in stock trading and reproduces
market returns over multiple time scales remains
open [Farmer, 1999; Stanley et al., 2002; Farmer &
Foley, 2009].

In this paper stock market is viewed in a
dynamical perspective. We derive a set of phe-
nomenological evolution laws of key variables
generating some salient features of the data in a
self-consistent manner. The aim is to identify key
mechanisms and to propose useful ways to charac-
terize the system at hand. The predictive potential
of the approach will also be assessed.

2. Data Analysis

We first adopt an “equation free” approach recently
developed in the nonlinear dynamics literature to
extract quantities relevant to market dynamics
[Yates et al., 2009; Bindal et al., 2006; Erban et al.,
2006; Haataja et al., 2004]. A first question in this
context is how the mean and standard deviation of
the returns on one day, week or month depend upon
the returns on the previous day, week or month. A
market return x(t) is defined to be

x(t) =
y(t + 1) − y(t)

y(t)

where y(t) and y(t+1) are the actual market indexes
at time t and t + 1.

The index we investigate is the Dow Jones
Industrial Average for the entire period October 1st
1928 to September 11th 2009. A typical time series
of the corresponding returns is depicted in Fig. 1.
We start by simply plotting returns for consecutive
time steps (daily, weekly or monthly) against each

(a)

(b)

Fig. 1. Time series of daily return values of Dow Jones
Industrial Average (a) from the entire period 1st October
1928 to 11th September 2009 and (b) time series generated
by the model of Eq. (1).
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other, in order to infer the structure of

f(x(t)) ≡ E[x(t + 1) |x(t)]

[Figs. 2(a), 2(d) and 2(g)]. Furthermore, we plot
variability over one time step

s(x(t), x(t + 1)) =
√

(x(t + 1) − x(t) − f(x(t)))2

[Figs. 2(b), 2(e) and 2(h)], along with the frequency
distribution of return sizes [Figs. 2(c), 2(f) and 2(i)].

As can be seen, there are surprisingly clear pat-
terns in both the mean and variance of changes
in returns, as well as the distribution of returns:
(1) For small daily returns, f(x(t)) depends in the
mean linearly on x(t), i.e. f(x(t)) ≈ γx(t). This
pattern is less clear in the case of larger returns

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. f(x) versus x(t), standard deviation of the drift s(x) versus x(t) and probability distribution of daily (a, b, c), weekly
(d, e, f) and monthly (g, h, i) returns. Data in red, model in black. Parameter values used on the basis of the daily data and
equal to α = 3.01, q2

1 = 2.01 × 10−1 and q2
2 = 5.29 × 10−4. The predicted distribution of returns (dashed lines) are fitted

with the actual values of the parameters: α = 3.01, q2
1 = 2.01 × 10−1 and q2

2 = 5.29 × 10−4 for daily returns; α = 5.68,
q2
1 = 9.14× 10−2 and q2

2 = 5.39 × 10−3 for weekly returns; and α = 1.79, q2
1 = 1.77 × 10−1 and q2

2 = 1.20 × 10−2 for monthly
returns. Owing to highly inhomogeneous sampling of the data, the convention adopted for the binning is for negative values
where d varies from 1 to 2.8 by steps of 0.1 and symmetrically for positive x’s.
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and disappears altogether for weekly and monthly
returns; (2) the standard deviation displays a V-like
dependence as a function of x(t), each branch of
which increases in a roughly linear fashion with
the size of the previous return; (3) the distribu-
tion for daily returns is sharply peaked but with
“fat tails”, while for months the distribution is wide
but bell-shaped.

Preliminary information on the nature of vari-
ability displayed by a time series is also provided by
the time autocorrelation function. As it turns out,
autocorrelation of the time series of the returns per
se [Fig. 1(a)] drops quite rapidly to zero. The situ-
ation is different for the time autocorrelation of the
absolute values of the returns, a quantity related
to market volatility. After a fast initial drop, this
quantity persists at non-negligible values over a long
period of time. This is in agreement with results
previously reported in the econophysics literature
[Arnéodo et al., 1998; Grau-Carles, 2001; Podobnik
et al., 2009].

3. Model

A minimal stochastic dynamical model which
accounts for some salient features as summarized
above is as follows. We assume a linear (in the
mean) relationship between returns on consecu-
tive days. Intrinsic variability in this relationship
is captured by modeling the fluctuations in the
slope of the linear law as a Markov noise process
F1(t). Extrinsic variability generated by the envi-
ronment is then modeled by an additive Markov
noise process F2(t). We thus arrive at the follow-
ing continuous-time stochastic differential equation
governing the evolution of x,

dx

dt
= −α(1 + F1(t))x + F2(t) (1)

where F1(t) and F2(t) will from now on be assimi-
lated to Gaussian white noises with variances equal
to q2

1 and q2
2 , respectively.

As well known, a stochastic differential equa-
tion driven by white noise can be interpreted in the
sense of Stratonovitch or in the sense of Itô depend-
ing on whether the white noise is viewed as the limit
of colored noise or the continuous time formulation
is viewed as the limit of a discrete time one. In most
physical applications, the Stratonovitch turns out to
be the appropriate one [van Kampen, 1981]. Never-
theless, we shall here adopt the Itô interpretation as

widely used in the finance literature on the grounds
of causality and therefore of the no-arbitrage condi-
tion. The probability distibution of x obeys then a
Fokker–Planck equation of the form [van Kampen,
1981]

∂P

∂t
=

∂

∂x
αxP +

1
2

∂2

∂x2
(q2

1α
2x2 + q2

2)P (2)

where the first term is the drift and the second
one is the (generalized) diffusion. The first, second
and fourth moment equations can be deduced from
Eq. (2)

dx

dt
= −αx (3a)

dx2

dt
= −2α

(
1 − αq2

1

2

)
x2 + q2

2 (3b)

dx4

dt
= −4α

(
1 − 3

2
αq2

1

)
x4 + 6q2

2x
2. (3c)

According to Eqs. (3a) and (3b), the mean value is
always stable as long as α > 0 and the fluctuations
become unstable if αq2

1 > 2. Finally, Eq. (2) admits
the following steady state solution

P ≈
[
1 +

α2q2
1

q2
2

x2

]−(1+1/αq2
1)

. (4)

Equation (4) belongs to the class of q-Gaussians
which have recently been used extensively in the
complex systems literature [Mendes & Tsallis,
2001]. It can, depending on the parameter values,
take both a power law form and a narrow distribu-
tion. In particular, one recovers a power law type
of relation if (q2

1α
2/q2

2)x
2 � 1. The existence of

finite first few moments of (4) requires that q2
1α be

sufficiently small, corresponding to the condition of
moment stability in Eqs. (3b) and (3c). Note that
the variables in Eq. (4) can be rescaled to give Stu-
dent’s t distribution. Student’s t is widely used for
modeling financial data precisely because of its ver-
satility with respect to its tails [Papoulis, 1990]. Our
derivation provides a means of parameterizing this
model in terms of return dynamics. We stress that
adding nonlinearities in the drift term in Eqs. (1)
and (2) would not lead to a qualitatively new situa-
tion as long as no “phase transition” occurs, i.e. as
long as the first moment equation (3a) admits x = 0
as the sole steady state. There is no evidence from
the data that this property may not be satisfied in
the present problem.
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4. Results

We now summarize the main predictions of the
model and compare them with the data. The first
step is to evaluate the three model parameters α, q1

and q2. We do this by setting the moment Eqs. (3b)
and (3c) equal to zero and solving the parameters
in terms of the moments of the returns data. We
then use the first moment equation to obtain by
straightforward integration the slope γ of x(t + 1)
versus x(t) as γ = exp(−α). Using this information
we obtain an explicit form of the probability of the
process [Eq. (4)] and also carry out a stochastic sim-
ulation of Eq. (1) from which the remaining quan-
tities displayed in Fig. 2 are inferred. Notice that
the parameters are determined from daily data and
then compared to weekly and monthly data, show-
ing that the model scales well between these time
scales.

A typical time series generated by the model
over a time period of the same length as the original
record is shown in Fig. 1(b). Compared to Fig. 1(a)
it looks more uniform and more stationary. It still
gives rise, however, to bursts reminiscent of stock
market data, including a marked crash (right part
of the record). Further results of the model are indi-
cated as black dashed lines in Fig. 2. The model
accurately reproduces a large number of features
seen in the data: (1) correlations in returns seen
over days disappear over weeks and months; (2) cor-
relations in the variance of the returns weaken but
remain visible as the time scale is lengthened; and
(3) the return distribution transforms from having
a steep point and long tail for days to a wide dis-
tribution for months.

We turn next to the time autocorrelation func-
tions of the returns and of their absolute values.
The first of these quantities shows quite similar
behavior to that drawn from the data. In contrast,
the second quantity drops rapidly to zero. This
absence of persistence as compared to the data is
due to the fact that the model of Eq. (1) is driven
by Gaussian white noises and gives thus rise to a
continuous-time Markov (diffusion) process, even
though one of the noises acts in a multiplicative
fashion. To reproduce long tail behavior of volatility
correlations while keeping return correlations short
ranged, additional features would be needed, which
are beyond the scope of the present model. Actually,
most of the currently available models reproducing
long-range behavior of volatilities are not reducible
to a dynamical systems formulation as in our Eq. (1)

but are either ad hoc multiplicative cascades models
[Arnéodo et al., 1998] or game theory based models
[Bouchaud et al., 2001].

All in all, the model gives a good match of
salient features of the data over 80 years. On the
other hand, it would be surprising if the param-
eters remain constant over this time. In Fig. 3,
we plot year by year parameter estimates for our
model. It is interesting to see, for example, that
the historically documented instability of the Dow
Jones between 1929 and 1932 can be character-
ized by a relatively high q2

2/α, possibly reflecting
the enhancement of environmental noise. The val-
ues of q2

1α are relatively high for the crash of 1987
and the economic crisis of 2008, reflecting increased
correlations between consecutive returns. As q2

1α
approaches the value of 2 the second moment of the
return distribution ceases to exist and large devia-
tions in market returns become possible. For 1987,
our model gives a distribution with a tail char-
acterized by a power law with exponent of 5.31.

(a)

(b)

Fig. 3. Evolution of the parameters of the model year by
year. Gray dots denote important historical crash. Years
where q2

1 < 0 were removed and years where the data slope
was negative was taken in absolute values.
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This observation explains, in a dynamic context,
the near Levy-walk like behavior of the financial
markets during the mid-80s [Mantegna & Stanley,
1995]. While many previous studies have empha-
sized these power law tails in stock return distribu-
tion, one can see that there are extensive periods of
time where the prefactor in Eq. (4), q2

1α
2/q2

2, is rela-
tively small and power law like behavior is recovered
only for extreme values of x. Our model thus pro-
vides a characterization of the entire dynamics of
returns in terms of the intrinsic parameters built in

a dynamical model and has in this respect a predic-
tive potential.

Another important question is how the func-
tional form of f(x) changes over time. Figure 4 sum-
marizes the behavior of the quantities considered in
Fig. 2 for more limited periods spanning the 60s,
80s and 2000s. For the 60s, the linear dependence
in f(x) is particularly clear. For the 80s, the slope
γ is near to zero for small returns but becomes vis-
ible again for returns larger than 1%. During the
2000s, we see a negative slope γ < 0. In this latter

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. f(x) versus x(t), standard deviation of the drift s(x) versus x(t) and probability distribution of daily returns for the
60’s (a, b, c), 80’s (d, e, f) and 2000’s (g, h, i). The theoretical probability distribution is plotted in dashed line with parameter
values taken from the data: α = 1.72, q2

1 = 2.63 × 10−1 and q2
2 = 1.09 × 10−4 for the 60’s, α = 3.25, q2

1 = 1.97 × 10−1 and
q2
2 = 5.22 × 10−4 for the 80’s and α = 2.66, q2

1 = 2.05 × 10−1 and q2
2 = 6.30 × 10−4. Binning same as Fig. 1.
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case, Eq. (1) fails to predict the negative slope,
although it does reproduce the overall return dis-
tribution. Basically, a negative slope implies non-
monotonic behavior in time, the modeling of which
would require at least one additional dynamical
variable.

It is important to put the model in the con-
text of the wide range of models already pro-
posed for stock market fluctuations. For example,
an ARCH(1) model can be fit to the variance in
Figs. 2(a), 2(d) and 2(g). Such a fitting does not
however result in a good prediction of the weekly
and monthly returns, because the time scale is omit-
ted from this model. Our model can also be viewed
as a continuous time version of a stochastic differ-
ence equation known as the Kesten process [Sor-
nette & Malevergne, 2001; Kesten, 1973; Sornette,
2004]. Furthermore, it shares common features with
some of those proposed in econo-physics. An equa-
tion similar to (1) but with no additive noise term
(i.e. q2

2 = 0) was considered by Richmond [2001] as
a possible origin of power law tails in financial time
series, but he provided no clear empirical justifica-
tion. Now, Eq. (4) gives rise to power law behavior
only in a range of large deviations. Furthermore,
the signature of financial crisis resides not only in
the value of the exponent but also on the param-
eter αq2

1 controlling the stability of the moments.
Indeed, reincorporating the additive noise and pro-
viding the relationship αq2

1 > 2, we provide a clear
relationship between Eq. (1) and market crashes,
in the sense that all moments but the first one are
unstable.

5. Conclusions

In conclusion, one of the merits of the combined
equation-free and model driven approaches devel-
oped in this work is to provide a unifying view
of market dynamics reducing in appropriate lim-
its to classical and to critical dynamics type of
approaches, and to propose a decomposition of
its salient features in terms of three key parame-
ters, α, αq2

1 and q2
2/α. Thanks to the equation-free

approach, figures such as Fig. 2 highlight pertinent
features of stock market returns [Bindal et al., 2006;
Erban et al., 2006; Haataja et al., 2004]. Once recur-
rent patterns are found, characterization of the kind
we used in Eqs. (1)–(4) and in Fig. 2 can be made
via a model. Indeed, the features of the stochastic
dynamical model we have derived allow us to bet-
ter understand the behavior of the stock traders.

A positive slope of the deterministic term α indi-
cates a degree of herding behavior with respect to
daily returns, rather than the market value, acting
as stimulus for further increases. Usually, this herd-
ing is subsumed by the intrinsic noise αq2

1 , which
reflects traders making large, correlated changes
to their buying or selling behaviour in response
to large market changes. Finally, q2

2/α is external
noise generated by genuine uncertainty about how
changes in the world will affect the values of stock.
In the present work both kinds of noise sources have
been assimilated to Gaussian white noises. It would
undoubtedly be interesting to extend the analysis to
colored noises and to assess the role of correlation
and memory effects in stock market dynamics.

Finally, we believe that the methodology devel-
oped in this paper is quite generic and can as such
be applied to a variety of phenomena beyond the
stock market fluctuations, where variability is a
ubiquitous feature. Of special interest is the vari-
ability of atmospheric fields where, depending on
the scale, long range correlations and power laws
coexist with white noise processes and narrow dis-
tributions. In view of the uncertainties underlying
the determination of the initial conditions and of
the parameters needed to run traditional numerical
prediction models, data analyses in the spirit of the
equation-free approach used here should provide a
valuable complement.
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Arnéodo, A., Muzy, J. F. & Sornette, D. [1998] “Direct
causal cascade in the stock market,” Eur. Phys. J. B
2, 277–282.

Bindal, A., Ierapetritou, M., Balakrishnan, S., Arm-
aou, A., Makeev, A. & Kevrekidis, I. [2006]
“Equation-free, coarse-grained computational opti-
mization using timesteppers,” Chem. Eng. Sci. 61,
779–793.

Blanchard, O. J. [1979] “Speculative bubbles, crashes
and rational-expectations,” Econom. Lett. 3, 387–389.

Bouchaud, J. P. & Cont, R. [1998] “A Langevin approach
to stock market fluctuations and crashes,” Europ.
Phys. J. B 6, 543–550.

Bouchaud, J. P., Giardina, I. & Mézard, M. [2001] “On
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