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Information flow and information production in a population system
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An approach aiming to quantify the dynamics of information within a population is developed based on the
mapping of the processes underlying the system’s evolution into a birth and death type stochastic process and the
derivation of a balance equation for the information entropy. Information entropy flux and information entropy
production are identified and their time-dependent properties, as well as their dependence on the parameters
present in the problem, are analyzed. States of minimum information entropy production are shown to exist for
appropriate parameter values. Furthermore, uncertainty and information production are transiently intensified
when the population traverses the inflexion point stage of the logisticlike growth process.
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I. INTRODUCTION

A population of group-living organisms is often led to
make collective decisions concerning internal organization and
communication with the external environment [1,2]. During
this process, we witness information transduction in the sense
that group members start communicating with each other until
eventually a behavior encompassing the population as a whole
is established.

The objective of this paper is to propose an approach to
information dynamics within a population based on entropy-
like quantities and their correlates. To this end, we adopt
a setting in which the principal variable of interest is the
number of individuals in the population, discarding at this stage
“internal” states corresponding to, e.g., options or signaling
conventions to be adopted. In such a setting, information
and its correlates are associated to different ways that the
population may be reshuffled according to the values of the
intrinsic parameters and the environmental constraints. To
arrive at a quantitative view of this process, we map the
evolution of the population into a birth and death type Markov
process [3,4] and derive a balance equation for the information
(Shannon) entropy associated to the process [5,6]. This balance
equation then allows one to identify an information entropy
flux and an information entropy production, the latter playing
a role analogous to the thermodynamic dissipation associated
to physicochemical processes out of the state of equilibrium
[7,8]. We analyze the dependence of these quantities on time,
population size, and other parameters present in the problem
and bring out a number of properties that provide useful
characterizations of the system at hand.

The population model is introduced in Sec. II, where a
macroscopic (mean-field) analysis serving as a reference for
the subsequent developments is also carried out. Section III
is devoted to the probabilistic (Markov) formulation and
to the analytic evaluation of the asymptotic (steady-state)
solution. The derivation of the information entropy balance
is reported in Sec. IV. The time-dependent properties and
the parameter dependencies of the principal quantities of
interest are analyzed in Sec. V, and the main conclusions are
summarized in Sec. VI.

*snicolis@math.uu.se

II. MODEL AND MACROSCOPIC ANALYSIS

Throughout this paper, we will be concerned with the
classical problem of logistic growth where, in addition, an
exchange of population between the subsystem of interest and
the external medium is allowed [9]. The rates v of the various
kinetic steps associated to these processes will be modeled as
follows:

(i) Population growth: v1 = k1ax, where x is the popula-
tion density within the system of interest, a is the density of
available resources, and k1 is a kinetic factor.

(ii) Saturation: v′
1 = k′

1x
2, where k′

1 is a kinetic factor.
(iii) Outflow of individuals from the system of interest to

the external medium: v2 = k2x, where k2 is a kinetic factor.
(iv) Inflow of individuals from external medium: v′

2 = k′
2b,

where b is the population density within the external medium
and k′

2 is a kinetic factor.
The balance equation for the population density x takes

thus the form

dx

dt
= v1 − v′

1 − v2 + v′
2 = k1ax − k′

1x
2 − k2x + k′

2b. (1)

In population dynamics, it is customary to cast such
equations in a form displaying the growth rate r and the
carrying capacity K of the ecosysttem,

dx

dt
= rx

(
1 − x

K

)
− k2x + k′

2b. (2a)

Comparing with the original form leads to the following
expression of r and K:

r = k1a, K = k1a

k′
1

. (2b)

The steady-state solutions xs of Eq. (1) are given by

k′
1x

2
s + (k2 − k1a)xs − k′

2b = 0. (3)

There is, thus, only one physically acceptable solution as
long as k′

2b �= 0. Figures 1(a) and 1(b) depict the time evolution
of x as given by Eq. (1) for the initial condition x(0) = 0.01 and
two different values of k2 and k′

2. The solutions approach the
asymptotic value xs on a characteristic time scale determined
by the derivative of the right-hand side of Eq. (1) with respect
to x:

τx = (−2k′
1xs + k1a − k2)−1

. (4)
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(a) (b)

FIG. 1. Time dependence of x [Eq. (1)] with a = 1, b = 0.1, k1 = k′
1 = 1, and k2 = k′

2 = 1 (a), k2 = k′
2 = 0.1 (b). Initial condition is

x(0) = 0.01.

We notice that, as the rates of outflux and influx become smaller
and as long as the initial population is much less than the
asymptotic one, the evolution tends to follow a sigmoidal curve
familiar from the solution of the logistic (Verhulst) equation
in a closed system [9].

III. MAPPING INTO A MARKOV PROCESS: THE BIRTH
AND DEATH MASTER EQUATION

In this section, we adopt a more mechanistic point of view
in which the four different terms contributing to Eq. (1) are
viewed as the result of transitions between states characterized
by different numbers X of individuals within the subsystem
of interest. The rates of these transitions depend on the
instantaneous values of X and, as a result, fluctuations around
the macroscopic state x = X/N , where X is the average value
of X and N is an extensivity factor representing the area
available or the total allowable number of individuals, are
automatically incorporated in the description. We will adopt a
Markovian approximation, i.e., that the system’s memory does
not extend beyond transitions between a state X at time t and
a state X ± 1 at time t + �t , with �t being small compared
to the characteristic time scales present in the problem.

We now write out the four transition probabilities per unit
time and area:

(i) First term in Eq. (1):

w1(X − 1 → X) = k1a
X − 1

N
. (5a)

(ii) Second term in Eq. (1):

w′
1(X → X − 1) = k′

1
X(X − 1)

N2
. (5b)

(iii) Third term in Eq. (1):

w2(X + 1 → X) = k2
X + 1

N
. (5c)

(iv) Fourth term in Eq. (1):

w′
2(X → X + 1) = k′

2b. (5d)

In writing these relations, we assumed that the resources
(term in a) and the reservoir (term in b) are not fluctuating.
Furthermore, processes corresponding to the first two and the
last two terms in Eq. (1) are modeled as pairs of direct and

reverse transitions, respectively. Finally, the quadratic term
in (1) associated with the x dependence of the growth rate
has been modeled as a second order rate process involving
encounters between two individuals, the frequency of which
is proportional to the number of pairs that can be formed in a
population of size X.

Let P (X,t) be the probability to find X individuals within
the subsystem at time t . By utilizing the Markov character of
the process, one may write the evolution equation of P in the
form of a master equation [3,4]

dP (X,t)

dt
= N{w1(X − 1 → X) + w′

2(X − 1 → X)}
×P (X − 1,t) + N{w′

1(X + 1 → X)

+w2(X + 1 → X)}P (X + 1,t)

−N{w1(X → X + 1) + w2(X → X − 1)

+w′
1(X → X − 1) + w′

2(X → X + 1)}P (X,t),

1 � X � N − 1 (6a)

and
dP (0,t)

dt
= k2P1 − k′

2bNP0, (6b)

dP (N,t)

dt
= {k1a(N − 1) + k′

2bN}P (N − 1,t)

−{k′
1(N − 1) + k2N}P (N,t), (6c)

where the factor N in front of the w’s accounts for the property
of extensivity.

Equations (6) admit a unique steady-state solution Ps ,
which, under the boundary conditions of zero probability flux
at X = 0 and N , satisfies the recurrence relation

{w1(X − 1 → X) + w′
2(X − 1 → X)}Ps(X − 1)

= {w′
1(X → X − 1) + w2(X → X − 1)}P (X) (7)

leading to the explicit expression

Ps(X) = Ps(0)
X∏

j=1

w1(j − 1 → j ) + w′
2(j − 1 → j )

w′
1(j → j − 1) + w2(j → j − 1)

, (8)

where Ps(0) is evaluated from the normalization condition∑
X Ps(X) = 1.
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FIG. 2. Steady-state probability distribution as obtained from the
numerical solution of the master equation (6). Parameter values are
k1 = k′

1 = k2 = k′
2 = 1, b = 0.5, a = 1, and N = 100.

Figure 2 depicts Ps a a function of X as obtained from
Eq. (8) for a maximum population size N = 100, in excel-
lent agreement with the result obtained from the numerical
solution of the initial value problem of the full master
equation (6) using an implicit integration scheme (not shown).
The distribution is nearly Gaussian in the vicinity of its
maximum and subsequently falls to zero on both sides in an
asymmetrical fashion, owing to the finite size of the population
and to the presence of a boundary at X = 0.

IV. ENTROPY ANALYSIS: INFORMATION FLOW AND
INFORMATION PRODUCTION

As stressed in the preceding section, the probabilistic
description accounts automatically for the variability that
may be present in the process of interest and, hence, for the
uncertainty of the observer to deduce the state of the system
on the basis of the knowledge of the probability distribution
P (X,t). A natural measure of variability and uncertainty, on
the grounds of its convexity and additivity properties, used
widely in information theory and in physical sciences is the
information entropy [5,6]

S(t) = −
∑
X

P (X,t) ln P (X,t). (9)

To see how information entropy is behaving during different
stages of the evolution, we differentiate both sides of Eq. (8)
with respect to time and replace dP/dt in the right-hand side
of the master equation (6). We obtain

dS

dt
= 1

2

{
N∑

X=1

[w1(X − 1 → X)P (X − 1)

−w′
1(X → X − 1)P (X)] ln

P (X − 1)

P (X)

+
N−1∑
X=0

[w2(X + 1 → X)P (X + 1)

−w′
2(X → X + 1)P (X)] ln

P (X + 1)

P (X)

}
. (10)

By adding and subtracting in the two terms of the right-hand
side the logarithm of the ratio of w1 and w′

1 and of w2 and w′
2,

respectively, one is led to decompose dS/dt into two types of
terms [7,8]

dS

dt
= J + σ, (11)

where σ is positive definite,

σ = 1

2

{
N∑

X=1

[w1(X − 1 → X)P (X − 1)

−w′
1(X → X − 1)P (X)] ln

P (X − 1)w1(X − 1 → X)

P (X)w′
1(X → X − 1)

+
N−1∑
X=0

[w2(X + 1 → X)P (X + 1)

−w′
2(X→X+ 1)P (X)] ln

P (X+1)w2(X+1 → X)

P (X)w′
2(X → X + 1)

}
,

� 0 (12)

and J is given by

J = 1

2

{
N∑

X=1

[w1(X − 1 → X)P (X − 1)

−w′
1(X → X − 1)P (X)] ln

w′
1(X → X − 1)

w1(X − 1 → X)

+
N−1∑
X=0

[w2(X + 1 → X)P (X + 1)

−w′
2(X → X + 1)P (X)] ln

w′
2(X → X + 1)

w2(X + 1 → X)

}
. (13)

By analogy with thermodynamics [10], we refer to σ and
J as the information production and the information flux,
respectively. We obtain then a picture of the system’s evolution
as a process in which information is continuously produced by
the dynamical processes within the system (term σ ) while
being at the same time exchanged with the outside world
(term J ). Within the minimal setting adopted as described
in the Introduction, this provides us with a way to quantify the
concept of information transduction by a group of interacting
individuals and, at the same time, with an alternative way to
characterize the complexity of its dynamics.

It should be pointed out that, just as in irreversible
thermodynamics, the decomposition of the rate of change of
S into a production and a flux part is not unique. The logic
followed in the decomposition adopted here is that, first, it
is the most natural one ensuring that the production part is
positive definite. Furthermore, if it turned out that the system’s
evolution could be cast into elementary steps expressible in
terms of thermodynamic rates and forces, then, in the limit
of large population size N , expression (12) should reduce
to the thermodynamic entropy production σth. In the present
problem, this correspondence is indeed legitimate, since the
steps leading to Eq. (1) are isomorphic to the rate processes

A + X
k1�
k′

1

2X,

(14)
X

k2�
k′

2

B,
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(a) (b)

FIG. 3. Dependence of S [Eq. (9)] and σ [Eq. (12)] on parameter bN in the steady state. Other parameters are kept at the same values as
in Fig. 2.

leading to the the following expression for the thermodynamic
entropy production [10] :

σth = (k1ax − k′
1x

2) ln
k1a

k′
1x

+ (k2x − k′
2b) ln

k2x

k′
2b

. (15)

As seen in the next section, the value of σ deduced
from expression (12) tends indeed to σth if N is sufficiently
large, thereby further justifying a posteriori our choice of the
production term σ . This, in turn, justifies qualifying the second
part in the decomposition of Eq. (11) as flux. An additional
reason is that J is a weighted sum of probability fluxes [terms
in square brackets in Eq. (13), see also comments below].
Notice that since we are dealing with a spatially well-mixed
system, the familiar expression of flow as a divergence of a
current does not find here an analog.

Going back to relations (11)–(13), in the stationary state,
dS/dt = 0 and J and σ cancel each other, which amounts to
saying that information production is sustained by a negative
information flux. We notice that J and σ are nonvanishing
as long as the terms in square brackets in Eqs. (12) and (13)
are nonzero. Now these terms represent the probability fluxes
associated to the transitions X − 1 � X and X + 1 � X.
They are, thus, nonzero as long as the direct (X ± 1 → X) and
the reverse (X → X ± 1) process do not cancel each other in
the stationary state, a property that plays a role similar to the
deviation from the state of thermodynamic equilibrium in a
physicochemical context. If the process associated to w1 and
w′

1 were the only one present (and likewise for the process
associated to w2 and w′

2), the stationarity condition [Eq. (7)]
would entail the vanishing of the probability fluxes and hence
of σ and J as well. In other words, the existence of at least
two coupled processes is a necessary (although not sufficient)
condition for information to be permanently produced within
the system.

V. TIME AND PARAMETER DEPENDENCE OF
INFORMATION ENTROPY AND INFORMATION

PRODUCTION

Figures 3(a) and 3(b) summarize the dependence of
information entropy S and information production σ in the
stationary state as a function of parameter b, keeping the
other parameters to the values corresponding to Fig. 2. As can

be seen, σ decreases, tending to zero as b tends to the value
beq = k1k2a/k′

1k
′
2. Now, in the kinetic scheme (14), the state

of thermodynamic equilibrium is achieved if, in each of the
two elementary steps, the rate of the forward transition is
counteracted by the rate of the backward one. Fixing a and the
rate constants once for all one obtains

k1axeq = k′
1x

2
eq, k2xeq = k′

2beq (16)

or, eliminating x between the two relations,

k1k2a = k′
1k

′
2beq. (17)

This yields a value of beq, which is exactly equal to
the aforementioned value for which σ vanishes. One can
check straightforwardly that, under the same conditions, the
thermodynamic entropy production σth vanishes as well. A
different way to express this result is as follows: By summing
the two steps in (14), one obtains an overall transition from A to
B, whose forward rate k1k2a and backward rate k′

1k
′
2b become

equal in the state of equilibrium. In short, information is
produced within the system only to the extent that the ongoing
processes do not balance each other individually. Interestingly,
the entropy S presents a maximum for an intermediate value
of b far from the equilibrium one. On inspecting the structure
of Ps(X), one sees that the distribution is becoming broader in
the vicinity of this value, entailing that uncertainty is thereby
enhanced.

The behavior of S and σ with respect to parameter k1 for
fixed values of the other parameters is represented in Figs. 4(a)
and 4(b). This parameter provides a measure of the relative
importance of processes 1 and 2 and is seen to lead to a
minimum of σ close to zero at a value k1m, where process 1
equilibrates, in the mean, with its inverse. Varying k1 on both
sides of this value leads to increasing values of σ . Furthermore,
S goes through an inflexion point in the vicinity of this value
and subsequently presents a mild overshoot. We notice that
both σ and S behave asymmetrically around k1m. Decreasing
k1 [and thus the carrying capacity K , see Eq. (2b)] leads
to significantly larger values of information production than
when k1 is increased. On the other hand, information entropy
decreases significantly with decreasing k1 but increases less
rapidly when k1 is increased, tending to a plateau in this
range of values. Stated differently, as the resources become
limited, the group tends to become more coherent and to

011110-4



INFORMATION FLOW AND INFORMATION PRODUCTION . . . PHYSICAL REVIEW E 84, 011110 (2011)

(a) (b)

FIG. 4. Dependence of (a) S and (b) σ on parameter k1 for N = 100. Other parameters are k′
1 = k2 = k′

2 = 1 and a = b = 1.

produce information more intensely, an unexpected and in
some respects counterintuitive trend. Finally, as expected, both
S and σ are monotonically increasing functions of size N ,
keeping all other parameters fixed (not shown).

Let us turn next to time-dependent properties. Figures 5(a)
and 5(b) depict the time dependence of S and σ for an initial

condition corresponding to a uniform occupation of all states
P (X,0) = 1/(N + 1). Both S and σ are seen to decrease
monotonically in time. The system thus attains, time going on,
a state of both minimum entropy and minimum information
production compatible with the constraints present. In a
sense, starting with a situation of maximum uncertainty, the

(a) (b)

(c) (d)

FIG. 5. Time evolution of (a) S, (b) σ , (c) 〈X〉, and (d) 〈δX2〉1/2 for two different values of b and for an initial probability of uniform
occupation of all states. Other parameter values are k1 = k′

1 = k2 = k′
2 = 1, a = 1, and N = 100.
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(a) (b)

(c) (d)

FIG. 6. Time dependence of (a) S, (b) σ , (c) 〈X〉, and (d) 〈δX2〉1/2 for different values of the size N and for an initial probability centered
on state X = 0. Other parameters are k1 = k′

1 = 1, k2 = k′
2 = 0.1, a = 1, and b = 0.1.

dynamics leads to an increasingly sharp selection of the state
of the system, which becomes practically identical [up to
small fluctuations of O(1/N)] to the state predicted by the
deterministic evolution laws. In parallel, in the course of this
selection, the system gradually filters much of the ongoing
information production until a minimal amount necessary
for the sustainability of the final state is reached. The time
dependencies of the expectation value 〈X〉 of the population
and of the standard deviation 〈δX2〉1/2

around it as deduced
from the master equation are shown in Figs. 5(c) and 5(d).
They suggest that the behavior shown in Figs. 5(a) and 5(b) is
to be correlated to the rapid tendency of 〈X〉 toward its final
saturation value and to a concomitant rapid decrease of the
fluctuations.

The situation is very different for initial conditions cor-
responding to a probability mass centered predominantly in
state X = 0, emulating a classical population growth problem
where, starting with few individuals, the group eventually
reaches a finite saturation level. Specifically, we set P (X,0) =
ε/N for X from 1 to N and P (0,0) = 1 − ε with ε � 1.
As seen in Figs. 6(a) and 6(b), for ε = 0.1 and depending

also on the size N , both S and σ may present nonmonotonic
behaviors in the form of overshoots and undershoots before
settling to their asymptotic values. This behavior turns out
to be robust, subsisting for ε values up to 0.01. Contrary to
Fig. 5, the dynamics leads here to the system from a regime
of practically no uncertainty and practically no information
production to regimes where information is gradually being
produced until the system reaches its final state. In the course of
this evolution, states of maximum uncertainty and maximum
information production are transiently showing up, a trend
that becomes quite pronounced for groups of sufficiently large
size N [dashed and bold lines in Figs. 6(a) and 6(b)]. The
time dependencies of the expectation value 〈X〉 and of the
standard deviation 〈δX2〉1/2 under these conditions, shown in
Figs. 6(c) and 6(d), are likewise very different from those
in Figs. 5(c) and 5(d). Specifically, the growth curve of 〈X〉
becomes increasingly sharp with increasing N , displaying a
clear-cut inflexion point, while 〈δX2〉1/2 presents a maximum.
Comparison with Figs. 6(a) and 6(b) shows that the maxima
of S, σ and 〈δX2〉1/2

occur at times close to the inflexion
point while being slightly shifted to each other, the sequence
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being that the maximum of σ is followed by the maximum
of 〈δX2〉1/2

, which is in turn followed by the maximum of
S. This suggests that the maxima of S and σ are to be
correlated to the transient increase of variability around the
mean; but, on the other side, being nonlinear functionals of
the probability distribution, S and σ contain contributions of
moments of an arbitrary order. This explains the shift between
the times of occurrence of the maxima. In short, there is a
definite correspondence between the rate of growth of the
population, which attains its maximum at the inflexion point,
and a transition in the way information is processed within the
system.

VI. CONCLUSIONS

Information theoretic concepts [5] in conjunction with the
tools of the theory of stochastic processes [3] have been
used extensively in mathematical and physical sciences in
connection with, in particular, the foundations of irreversible
thermodynamics [7,8,10]. In this paper, we developed an
approach along similar lines, aiming to quantify information
dynamics within a population. We considered the simplest
nontrivial setting of logistic growth in an open system, mapped
the dynamics into a birth and death Markov process, and
derived a balance equation for the information (Shannon)
entropy associated to the instantaneous probability distribution
P (X,t) of population size X. This allowed us to identify
an information flux and an information production, to relate
these quantities to the parameters present in the problem,
and to assess their behavior during different stages of the
evolution toward the asymptotic (steady) state. We have shown
that information production, by construction a non-negative
quantity, takes nonzero values as long as the rates of the
different elementary steps in the process do not cancel each
other, thereby maintaining the system in a state analogous
to the nonequilibrium states familiar in thermodynamics.
Depending on the initial preparation, the system could tend
monotonously to a state of minimum entropy and information
production or, on the contrary, present nontrivial behavior
where entropy and information production go transiently
through a maximum. The latter occurs at a time stage of
the logistic growth process where the population size goes
through an inflexion point, i.e., when its growth rate reaches
a maximum. Furthermore, in the long time limit, information
entropy and entropy production can display intricate behaviors

with respect to the parameters. In particular, there exist states
of minimum information production for special parameter
values around which information is processed by the group
in markedly asymmetric ways, the tendency being to enhance
information production as the resources become limited. Such
properties provide useful ways to characterize the system at
hand, a conclusion similar to that reached in a recent paper
by Andrae et al. [11] where the properties of information
entropy production were studied in a three-competing species
population model in the presence of mutations.

An interesting corollary of our analysis is that, as a rule,
the steady states realized by the system are not states of
extremal (be it minimum or maximum) information entropy
production. This is due to both the presence of nonlinear
steps in the dynamics and to the presence of nonequilibrium
constraints. In particular, the validity of a “universal principle”
of maximum dissipation in the most stable state that can be
realized by a system, which is currently attracting attention in
the literature [12,13], appears to be questionable in light of our
results.

By its generic character, the analysis reported in this paper
can be extended in different directions. A most natural case
would be to consider more complex schemes accounting for
the presence of several options as they occur, for instance, in a
wide range of problems from social sciences and psychology
to foraging in social insect populations [1,2,14,15]. Here,
information exchange is expected to be subtler and consid-
erably more involved than in the minimal setting adopted in
this paper. The new issue arising is decision making. The
information theory approach outlined in this paper would
help to place this question in a dynamical perspective and
to quantify the concepts of quality and rationality of this
process, which to a large extent remain elusive [14,15]. Of
interest would also be to assess the role of innovations [16]
and of mutations as they occur in biological evolution [17].
Here, the appearance of new entities within the system is
expected to open new communication and information ex-
change channels that could, under certain conditions, take over
the existing ones and drive the system toward new modes of
organization.
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