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Structure

Morning lectures by David Sumpter.

Afternoon practical sessions.
Differential equation models (Stam Nicolis)
Self-propelled particles (Daniel Strombom)
Data analysis (Andrea Perna)
Model fitting (Richard Mann)

Wednesday guest talks in the morning
(Mario Romero, Jens Krause, Peter
Hedstrom) then free afternoon.



Outline

Course

1, Modelling animal behaviour

2, Functional explanations

3, Information transfer and synergy
4, Information transfer in humans.

5, Group decision-making

6, Collective motion

7, Quantifying individual interactions.
8, Collective structures

9, Negative feedback and regulation
10, Complicated individuals
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some points

Please ask questions during the lectures
(and afterwards).

Balance between mathematics and
biology.

Ask me if you want me to cover
something in particular later during the
week.

I will put up pdf’s of the talks in a
Dropbox I will share with you.



Collective Behaviour
Lecture 1

Modelling Animal Behaviour
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What is mathematical modelling?

A way of travelling securely from A to B.
A: Assumptions about the world.
B: Consequences of those assumptions

Mathematics is rigorous thinking.



Why mathematical modelling?

1, Explain data as simply as possible.
2, Link together levels of explanation.
3, To provide detailed descriptions.

4, To predict future outcomes.
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1, Explaining data

Provide one or two simple rules from
which everything else 1s explained.

This 1s qualitative modelling, but
necessarily some comparison to data.

Explanation ratio: Explained/Assumptions



Example: logistic growth

=5 | g | g

X 1s the number of ‘infected’ individuals;
PX is the rate at which they contact others;

(1— _) 1s the probability that a contact is with an
n uninfected individual.
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Example: logistic growth

700
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Disease spread:

dx X
e x(1-2
il ( n)
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X 1s the number infected,;
PX 1s the rate of contacts;
(1- X ) is the proportion of individuals that are

T susceptible.
Nannyonga et al. (2012) PLoS One
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Yeast growth: :
dx X i =
E = px(l - _) 1 % 10 Diploids
n

“““““““““““““““““““““

Time in hours

X 1s the number of bacteria;

PX 1is the rate of dividing;
(1— _) is the proportion of environment which is
n unoccupied.

Otto & Day (2007) A biologists guide to mathematical modelling.
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xample: l@g isiic growth
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Number of ants on the
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Information: =
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—=px(l-—)
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X are the ants foraging at a site;
PX 1s the rate of recruitment to a site;

(1— _) is the proportion of colony who don’t know
n about the site yet.

Detrain (2001) Self-organisation in biological systems
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Innovation (Diffusion):

dx X
e x(1-2
il ( n)

owa communities, plotted on arithmetic coordinates. The lines represent leas
istic equations. (Data from Ryan and Gross, 1943.)

X 1s the number adopting a technology;

PX 1s the rate of informing about technology;

1= 1s the proportion of individuals not yet
n using the technology.

Hamblin et al. (1973) A mathematical theory of social change.
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2, Linking levels of explanation

|~_\\u-\

Large aggregates cannot be understood by
simple extrapolation from the behaviour
of a few particles.

Need mathematical models to integrate
our understanding from one level to the
next.

Explanation ratio may be lower, but more
detailed.
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according to the idea: The elementary
entities of science X obey the laws of
science Y.

X Y

solid state or elementary particle -
many-body physics physics

chemistry many-body physics

molecular biology chemistry

cell biology molecular biology

psychology physiology
social sciences psychology

But this hierarchy does not imply
that science X is “just applied Y.” At
each stage entirely new laws, concepts,
and generalizations are necessary, re-
quiring inspiration and creativity to just
as great a degree as in the previous one.
Psychology is not applied biology, nor
is biology applied chemistry.




Example: self-propelled particles
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Couzin et al. (2002) Journal of theoretical biology
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Example: seli-propelled particles
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Couzin et al. (2002) Journal of theoretical biology
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3, Detailed descriptions

Put everything we know down in one
place.

Quantitative modelling.
Test that this knowledge is self-consistent.

Find out if we really do understand how the
system works.
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Why do we do mathematical

modelling?

~

Decreasing| 1, EXplain data as simply as

level of
abstraction

Increasing
level of
description

possible.

2, Link together levels of
explanation.

3, To provide detailed descriptions.

Y 4, To predict future outcomes.
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Why do we do mathe
mod 11 ing
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1, Explain data as simply as
possible.

2, Link together levels of
_explanation.

—3, To provide detalled descriptions.

4, To predict future outcomes.

—
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Why do we do mathematical
modelling
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Fun!

Hard
work

——

1, Explain data as simply as
possible.

2, Link together levels of
_explanation.

—3, To provide detalled descriptions.

4, To predict future outcomes.

—
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